Table Of Contents

Previous topic

Miscellaneous Features

Next topic

API Documentation

This Page

Reference Manual

Examples

Converting a 3-color image (JPG) to separate FITS images

Starting image
Red color information

Red color information

Green color information

Green color information

Blue color information

Blue color information

#!/usr/bin/env python
import pyfits
import numpy
import Image

#get the image and color information
image = Image.open('hs-2009-14-a-web.jpg')
#image.show()
xsize, ysize = image.size
r, g, b = image.split()
rdata = r.getdata() # data is now an array of length ysize\*xsize
gdata = g.getdata()
bdata = b.getdata()

# create numpy arrays
npr = numpy.reshape(rdata, (ysize, xsize))
npg = numpy.reshape(gdata, (ysize, xsize))
npb = numpy.reshape(bdata, (ysize, xsize))

# write out the fits images, the data numbers are still JUST the RGB
# scalings; don't use for science
red = pyfits.PrimaryHDU(data=npr)
red.header['LATOBS'] = "32:11:56" # add spurious header info
red.header['LONGOBS'] = "110:56"
red.writeto('red.fits')

green = pyfits.PrimaryHDU(data=npg)
green.header['LATOBS'] = "32:11:56"
green.header['LONGOBS'] = "110:56"
green.writeto('green.fits')

blue = pyfits.PrimaryHDU(data=npb)
blue.header['LATOBS'] = "32:11:56"
blue.header['LONGOBS'] = "110:56"
blue.writeto('blue.fits')