# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
This module defines two classes that deal with parameters.
It is unlikely users will need to work with these classes directly, unless they
define their own models.
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
import inspect
import functools
import numbers
import numpy as np
from ..utils import isiterable
from ..utils.compat import ignored
from ..extern import six
__all__ = ['Parameter', 'InputParameterError']
def _tofloat(value):
"""Convert a parameter to float or float array"""
if isiterable(value):
try:
value = np.array(value, dtype=np.float)
except (TypeError, ValueError):
# catch arrays with strings or user errors like different
# types of parameters in a parameter set
raise InputParameterError(
"Parameter of {0} could not be converted to "
"float".format(type(value)))
elif isinstance(value, np.ndarray):
# A scalar/dimensionless array
value = float(value.item())
elif isinstance(value, (numbers.Number, np.number)):
value = float(value)
elif isinstance(value, bool):
raise InputParameterError(
"Expected parameter to be of numerical type, not boolean")
else:
raise InputParameterError(
"Don't know how to convert parameter of {0} to "
"float".format(type(value)))
return value
[docs]class Parameter(object):
"""
Wraps individual parameters.
This class represents a model's parameter (in a somewhat broad sense). It
acts as both a descriptor that can be assigned to a class attribute to
describe the parameters accepted by an individual model (this is called an
"unbound parameter"), or it can act as a proxy for the parameter values on
an individual model instance (called a "bound parameter").
Parameter instances never store the actual value of the parameter
directly. Rather, each instance of a model stores its own parameters
as either hidden attributes or (in the case of
`~astropy.modeling.FittableModel`) in an array. A *bound*
Parameter simply wraps the value in a Parameter proxy which provides some
additional information about the parameter such as its constraints.
*Unbound* Parameters are not associated with any specific model instance,
and are merely used by model classes to determine the names of their
parameters and other information about each parameter such as their default
values and default constraints.
Parameters
----------
name : str
parameter name
description : str
parameter description
default : float or array
default value to use for this parameter
getter : callable
a function that wraps the raw (internal) value of the parameter
when returning the value through the parameter proxy (eg. a
parameter may be stored internally as radians but returned to the
user as degrees)
setter : callable
a function that wraps any values assigned to this parameter; should
be the inverse of getter
fixed : bool
if True the parameter is not varied during fitting
tied : callable or False
if callable is supplied it provides a way to link the value of this
parameter to another parameter (or some other arbitrary function)
min : float
the lower bound of a parameter
max : float
the upper bound of a parameter
model : object
an instance of a Model class; this should only be used internally for
creating bound Parameters
"""
# See the _nextid classmethod
_nextid = 1
def __init__(self, name='', description='', default=None, getter=None,
setter=None, fixed=False, tied=False, min=None, max=None,
model=None):
super(Parameter, self).__init__()
if model is not None and not name:
raise TypeError('Bound parameters must have a name specified.')
self._name = name
self.__doc__ = description.strip()
self._default = default
self._default_fixed = fixed
self._default_tied = tied
self._default_min = min
self._default_max = max
self._order = None
self._shape = None
self._model = model
# The getter/setter functions take one or two arguments: The first
# argument is always the value itself (either the value returned or the
# value being set). The second argument is optional, but if present
# will contain a reference to the model object tied to a parameter (if
# it exists)
if getter is not None:
self._getter = self._create_value_wrapper(getter, model)
else:
self._getter = None
if setter is not None:
self._setter = self._create_value_wrapper(setter, model)
else:
self._setter = None
if model is not None:
with ignored(AttributeError):
# This can only work if the paramter's value has been set by
# the model
_, self._shape = self._validate_value(model, self.value)
else:
# Only Parameters declared as class-level descriptors require
# and ordering ID
self._order = self._get_nextid()
def __get__(self, obj, objtype):
if obj is None:
return self
return self.__class__(self._name, default=self._default,
getter=self._getter, setter=self._setter,
fixed=self._default_fixed,
tied=self._default_tied, min=self._default_min,
max=self._default_max, model=obj)
def __set__(self, obj, value):
value, shape = self._validate_value(obj, value)
if self._setter is not None:
setter = self._create_value_wrapper(self._setter, obj)
value = setter(value)
self._set_model_value(obj, value)
def __len__(self):
if self._model is None:
raise TypeError('Parameter definitions do not have a length.')
return len(self._model)
def __getitem__(self, key):
value = self.value
if len(self._model) == 1:
# Wrap the value in a list so that getitem can work for sensible
# indices like [0] and [-1]
value = [value]
return value[key]
def __setitem__(self, key, value):
# Get the existing value and check whether it even makes sense to
# apply this index
oldvalue = self.value
n_models = len(self._model)
#if n_models == 1:
# # Convert the single-dimension value to a list to allow some slices
# # that would be compatible with a length-1 array like [:] and [0:]
# oldvalue = [oldvalue]
if isinstance(key, slice):
if len(oldvalue[key]) == 0:
raise InputParameterError(
"Slice assignment outside the parameter dimensions for "
"'{0}'".format(self.name))
for idx, val in zip(range(*key.indices(len(self))), value):
self.__setitem__(idx, val)
else:
try:
oldvalue[key] = value
except IndexError:
raise InputParameterError(
"Input dimension {0} invalid for {1!r} parameter with "
"dimension {2}".format(key, self.name, n_models))
def __repr__(self):
if self._model is None:
return "Parameter('{0}')".format(self._name)
else:
return "Parameter('{0}', value={1})".format(
self._name, self.value)
@property
def name(self):
"""Parameter name"""
return self._name
@property
def default(self):
"""Parameter default value"""
if (self._model is None or self._default is None or
len(self._model) == 1):
return self._default
# Otherwise the model we are providing for has more than one parameter
# sets, so ensure that the default is repeated the correct number of
# times along the model_set_axis if necessary
n_models = len(self._model)
model_set_axis = self._model._model_set_axis
default = self._default
new_shape = (np.shape(default) +
(1,) * (model_set_axis + 1 - np.ndim(default)))
default = np.reshape(default, new_shape)
# Now roll the new axis into its correct position if necessary
default = np.rollaxis(default, -1, model_set_axis)
# Finally repeat the last newly-added axis to match n_models
default = np.repeat(default, n_models, axis=-1)
# NOTE: Regardless of what order the last two steps are performed in,
# the resulting array will *look* the same, but only if the repeat is
# performed last will it result in a *contiguous* array
return default
@property
def value(self):
"""The unadorned value proxied by this parameter"""
if self._model is None:
raise AttributeError('Parameter definition does not have a value')
value = self._get_model_value(self._model)
if self._getter is None:
return value
else:
return self._getter(value)
@value.setter
def value(self, value):
if self._model is None:
raise AttributeError('Cannot set a value on a parameter '
'definition')
if self._setter is not None:
val = self._setter(value)
self._set_model_value(self._model, value)
@property
def shape(self):
"""The shape of this parameter's value array."""
return self._shape
@property
def size(self):
"""The size of this parameter's value array."""
return np.size(self.value)
@property
def fixed(self):
"""
Boolean indicating if the parameter is kept fixed during fitting.
"""
if self._model is not None:
fixed = self._model._constraints['fixed']
return fixed.get(self._name, self._default_fixed)
else:
return self._default_fixed
@fixed.setter
def fixed(self, value):
"""Fix a parameter"""
if self._model is not None:
if not isinstance(value, bool):
raise TypeError("Fixed can be True or False")
self._model._constraints['fixed'][self._name] = value
else:
raise AttributeError("can't set attribute 'fixed' on Parameter "
"definition")
@property
def tied(self):
"""
Indicates that this parameter is linked to another one.
A callable which provides the relationship of the two parameters.
"""
if self._model is not None:
tied = self._model._constraints['tied']
return tied.get(self._name, self._default_tied)
else:
return self._default_tied
@tied.setter
def tied(self, value):
"""Tie a parameter"""
if self._model is not None:
if not six.callable(value) and value not in (False, None):
raise TypeError("Tied must be a callable")
self._model._constraints['tied'][self._name] = value
else:
raise AttributeError("can't set attribute 'tied' on Parameter "
"definition")
@property
def bounds(self):
"""The minimum and maximum values of a parameter as a tuple"""
if self._model is not None:
bounds = self._model._constraints['bounds']
default_bounds = (self._default_min, self._default_max)
return bounds.get(self._name, default_bounds)
else:
return (self._default_min, self._default_max)
@bounds.setter
def bounds(self, value):
"""Set the minimum and maximum values of a parameter from a tuple"""
if self._model is not None:
_min, _max = value
if _min is not None:
if not isinstance(_min, numbers.Number):
raise TypeError("Min value must be a number")
_min = float(_min)
if _max is not None:
if not isinstance(_max, numbers.Number):
raise TypeError("Max value must be a number")
_max = float(_max)
bounds = self._model._constraints.setdefault('bounds', {})
self._model._constraints['bounds'][self._name] = (_min, _max)
else:
raise AttributeError("can't set attribute 'bounds' on Parameter "
"definition")
@property
def min(self):
"""A value used as a lower bound when fitting a parameter"""
return self.bounds[0]
@min.setter
def min(self, value):
"""Set a minimum value of a parameter"""
if self._model is not None:
self.bounds = (value, self.max)
else:
raise AttributeError("can't set attribute 'min' on Parameter "
"definition")
@property
def max(self):
"""A value used as an upper bound when fitting a parameter"""
return self.bounds[1]
@max.setter
def max(self, value):
"""Set a maximum value of a parameter."""
if self._model is not None:
self.bounds = (self.min, value)
else:
raise AttributeError("can't set attribute 'max' on Parameter "
"definition")
@classmethod
def _get_nextid(cls):
"""Returns a monotonically increasing ID used to order Parameter
descriptors declared at the class-level of Model subclasses.
This allows the desired parameter order to be determined without
having to list it manually in the param_names class attribute.
"""
nextid = cls._nextid
cls._nextid += 1
return nextid
def _get_model_value(self, model):
"""
This method implements how to retrieve the value of this parameter from
the model instance. See also `Parameter._set_model_value`.
These methods take an explicit model argument rather than using
self._model so that they can be used from unbound `Parameter`
instances.
"""
if not hasattr(model, '_parameters'):
# The _parameters array hasn't been initialized yet; just translate
# this to an AttributeError
raise AttributeError(self._name)
# Use the _param_metrics to extract the parameter value from the
# _parameters array
param_slice, param_shape = model._param_metrics[self._name]
value = model._parameters[param_slice]
if param_shape:
value = value.reshape(param_shape)
else:
value = value[0]
return value
def _set_model_value(self, model, value):
"""
This method implements how to store the value of a parameter on the
model instance.
Currently there is only one storage mechanism (via the ._parameters
array) but other mechanisms may be desireable, in which case really the
model class itself should dictate this and *not* `Parameter` itself.
"""
# TODO: Maybe handle exception on invalid input shape
param_slice, param_shape = model._param_metrics[self._name]
param_size = np.prod(param_shape)
if np.size(value) != param_size:
raise InputParameterError(
"Input value for parameter {0!r} does not have {1} elements "
"as the current value does".format(self._name, param_size))
model._parameters[param_slice] = np.array(value).ravel()
def _validate_value(self, model, value):
if model is None:
return
n_models = len(model)
value = _tofloat(value)
if n_models == 1:
# Just validate the value with _tofloat
return value, np.shape(value)
else:
shape = np.shape(value)
model_axis = model._model_set_axis
if model_axis < 0:
model_axis = len(shape) + model_axis
shape = shape[:model_axis] + shape[model_axis + 1:]
return value, shape
def _create_value_wrapper(self, wrapper, model):
"""Wrappers a getter/setter function to support optionally passing in
a reference to the model object as the second argument.
If a model is tied to this parameter and its getter/setter supports
a second argument then this creates a partial function using the model
instance as the second argument.
"""
if isinstance(wrapper, np.ufunc):
if wrapper.nin != 1:
raise TypeError("A numpy.ufunc used for Parameter "
"getter/setter may only take one input "
"argument")
else:
wrapper_args = inspect.getargspec(wrapper)
nargs = len(wrapper_args.args)
if nargs == 1:
pass
elif nargs == 2:
if model is not None:
# Don't make a partial function unless we're tied to a
# specific model instance
model_arg = wrapper_args.args[1]
wrapper = functools.partial(wrapper, **{model_arg: model})
else:
raise TypeError("Parameter getter/setter must be a function "
"of either one or two arguments")
return wrapper
def __add__(self, val):
return self.value + val
def __radd__(self, val):
return val + self.value
def __sub__(self, val):
return self.value - val
def __rsub__(self, val):
return val - self.value
def __mul__(self, val):
return self.value * val
def __rmul__(self, val):
return val * self.value
def __pow__(self, val):
return self.value ** val
def __rpow__(self, val):
return val ** self.value
def __div__(self, val):
return self.value / val
def __rdiv__(self, val):
return val / self.value
def __truediv__(self, val):
return self.value / val
def __rtruediv__(self, val):
return val / self.value
def __eq__(self, val):
return (np.asarray(self) == np.asarray(val)).all()
def __ne__(self, val):
return not (np.asarray(self) == np.asarray(val)).all()
def __lt__(self, val):
return (np.asarray(self) < np.asarray(val)).all()
def __gt__(self, val):
return (np.asarray(self) > np.asarray(val)).all()
def __le__(self, val):
return (np.asarray(self) <= np.asarray(val)).all()
def __ge__(self, val):
return (np.asarray(self) >= np.asarray(val)).all()
def __neg__(self):
return -self.value
def __abs__(self):
return np.abs(self.value)