Bases: astropy.convolution.Kernel2D
2D Mexican hat filter kernel.
The Mexican Hat, or inverted Gaussian-Laplace filter, is a bandpass filter. It smoothes the data and removes slowly varying or constant structures (e.g. Background). It is useful for peak or multi-scale detection.
This kernel is derived from a normalized Gaussian function, by computing the second derivative. This results in an amplitude at the kernels center of 1. / (pi * width ** 4). The normalization is the same as for scipy.ndimage.filters.gaussian_laplace, except for a minus sign.
Parameters: | width : number
x_size : odd int, optional
y_size : odd int, optional
mode : str, optional
factor : number, optional
|
---|
See also
Box2DKernel, Tophat2DKernel, MexicanHat2DKernel, Ring2DKernel, TrapezoidDisk2DKernel, AiryDisk2DKernel
Examples
Kernel response:
import matplotlib.pyplot as plt from astropy.convolution import MexicanHat2DKernel mexicanhat_2D_kernel = MexicanHat2DKernel(10) plt.imshow(mexicanhat_2D_kernel, interpolation='none', origin='lower') plt.xlabel('x [pixels]') plt.ylabel('y [pixels]') plt.colorbar() plt.show()(Source code, png, hires.png, pdf)