Accessing the table properties and data is straightforward and is generally consistent with the basic interface for numpy structured arrays.
For the impatient, the code below shows the basics of accessing table data. Where relevant there is a comment about what sort of object. Except where noted, the table access returns objects that can be modified in order to update table data or properties. In cases where is returned and how the data contained in that object relate to the original table data (i.e. whether it is a copy or reference, see Copy versus Reference).
Make table
from astropy.table import Table
import numpy as np
arr = np.arange(15).reshape(5, 3)
t = Table(arr, names=('a', 'b', 'c'), meta={'keywords': {'key1': 'val1'}})
Table properties
t.columns # Dict of table columns
t.colnames # List of column names
t.meta # Dict of meta-data
len(t) # Number of table rows
Access table data
t['a'] # Column 'a'
t['a'][1] # Row 1 of column 'a'
t[1] # Row obj for with row 1 values
t[1]['a'] # Column 'a' of row 1
t[2:5] # Table object with rows 2:5
t[[1, 3, 4]] # Table object with rows 1, 3, 4 (copy)
t[np.array([1, 3, 4])] # Table object with rows 1, 3, 4 (copy)
t['a', 'c'] # Table with cols 'a', 'c' (copy)
dat = np.array(t) # Copy table data to numpy structured array object
Print table or column
print t # Print formatted version of table to the screen
t.pprint() # Same as above
t.pprint(show_unit=True) # Show column unit
t.pprint(show_name=False) # Do not show column names
t.pprint(max_lines=-1, max_width=-1) # Print full table no matter how long / wide it is
t.more() # Interactively scroll through table like Unix "more"
print t['a'] # Formatted column values
t['a'].pprint() # Same as above, with same options as Table.pprint()
t['a'].more() # Interactively scroll through column
lines = t.pformat() # Formatted table as a list of lines (same options as pprint)
lines = t['a'].pformat() # Formatted column values as a list
For all the following examples it is assumed that the table has been created as below:
>>> from astropy.table import Table, Column
>>> import numpy as np
>>> arr = np.arange(15).reshape(5, 3)
>>> t = Table(arr, names=('a', 'b', 'c'), meta={'keywords': {'key1': 'val1'}})
>>> t['a'].format = "%6.3f" # print as a float with 3 digits after decimal point
>>> t['a'].unit = 'm sec^-1'
>>> t['a'].description = 'unladen swallow velocity'
>>> print t
a b c
m sec^-1
-------- --- ---
0.000 1 2
3.000 4 5
6.000 7 8
9.000 10 11
12.000 13 14
The code below shows accessing the table columns as a TableColumns object, getting the column names, table meta-data, and number of table rows. The table meta-data is simply an ordered dictionary (OrderedDict) by default.
>>> t.columns
<TableColumns names=('a','b','c')>
>>> t.colnames
['a', 'b', 'c']
>>> t.meta # Dict of meta-data
{'keywords': {'key1': 'val1'}}
>>> len(t)
5
As expected one can access a table column by name and get an element from that column with a numerical index:
>>> t['a'] # Column 'a'
<Column name='a' unit='m sec^-1' format='%6.3f' description='unladen swallow velocity'>
array([ 0, 3, 6, 9, 12])
>>> t['a'][1] # Row 1 of column 'a'
3
When a table column is printed, either with print or via the str() built-in function, it is formatted according to the format attribute (see Format specifier):
>>> print(t['a'])
a
------
0.000
3.000
6.000
9.000
12.000
Likewise a table row and a column from that row can be selected:
>>> t[1] # Row object corresponding to row 1
<Row 1 of table
values=(3, 4, 5)
dtype=[('a', '<i4'), ('b', '<i8'), ('c', '<i8')]>
>>> t[1]['a'] # Column 'a' of row 1
3
A Row object has the same columns and meta-data as its parent table:
>>> t[1].columns
<TableColumns names=('a','b','c')>
>>> t[1].colnames
['a', 'b', 'c']
Slicing a table returns a new table object which references to the original data within the slice region (See Copy versus Reference). The table meta-data and column definitions are copied.
>>> t[2:5] # Table object with rows 2:5 (reference)
<Table rows=3 names=('a','b','c') units=('m sec^-1',None,None)>
array([(6, 7, 8), (9, 10, 11), (12, 13, 14)],
dtype=[('a', '<i8'), ('b', '<i8'), ('c', '<i8')])
It is possible to select table rows with an array of indexes or by specifying multiple column names. This returns a copy of the original table for the selected rows or columns.
>>> print t[[1, 3, 4]] # Table object with rows 1, 3, 4 (copy)
a b c
m sec^-1
-------- --- ---
3.000 4 5
9.000 10 11
12.000 13 14
>>> print t[np.array([1, 3, 4])] # Table object with rows 1, 3, 4 (copy)
a b c
m sec^-1
-------- --- ---
3.000 4 5
9.000 10 11
12.000 13 14
>>> print t['a', 'c'] # or t[['a', 'c']] or t[('a', 'c')]
... # Table with cols 'a', 'c' (copy)
a c
m sec^-1
-------- ---
0.000 2
3.000 5
6.000 8
9.000 11
12.000 14
Finally, one can access the underlying table data as a native numpy structured array by creating a copy or reference with np.array:
>>> data = np.array(t) # copy of data in t as a structured array
>>> data = np.array(t, copy=False) # reference to data in t
The values in a table or column can be printed or retrieved as a formatted table using one of several methods:
These methods use Format specifier if available and strive to make the output readable. By default, table and column printing will not print the table larger than the available interactive screen size. If the screen size cannot be determined (in a non-interactive environment or on Windows) then a default size of 25 rows by 80 columns is used. If a table is too large then rows and/or columns are cut from the middle so it fits. For example:
>>> arr = np.arange(3000).reshape(100, 30) # 100 rows x 30 columns array
>>> t = Table(arr)
>>> print t
col0 col1 col2 col3 col4 col5 col6 ... col24 col25 col26 col27 col28 col29
---- ---- ---- ---- ---- ---- ---- ... ----- ----- ----- ----- ----- -----
0 1 2 3 4 5 6 ... 24 25 26 27 28 29
30 31 32 33 34 35 36 ... 54 55 56 57 58 59
60 61 62 63 64 65 66 ... 84 85 86 87 88 89
90 91 92 93 94 95 96 ... 114 115 116 117 118 119
120 121 122 123 124 125 126 ... 144 145 146 147 148 149
150 151 152 153 154 155 156 ... 174 175 176 177 178 179
180 181 182 183 184 185 186 ... 204 205 206 207 208 209
210 211 212 213 214 215 216 ... 234 235 236 237 238 239
240 241 242 243 244 245 246 ... 264 265 266 267 268 269
... ... ... ... ... ... ... ... ... ... ... ... ... ...
2760 2761 2762 2763 2764 2765 2766 ... 2784 2785 2786 2787 2788 2789
2790 2791 2792 2793 2794 2795 2796 ... 2814 2815 2816 2817 2818 2819
2820 2821 2822 2823 2824 2825 2826 ... 2844 2845 2846 2847 2848 2849
2850 2851 2852 2853 2854 2855 2856 ... 2874 2875 2876 2877 2878 2879
2880 2881 2882 2883 2884 2885 2886 ... 2904 2905 2906 2907 2908 2909
2910 2911 2912 2913 2914 2915 2916 ... 2934 2935 2936 2937 2938 2939
2940 2941 2942 2943 2944 2945 2946 ... 2964 2965 2966 2967 2968 2969
2970 2971 2972 2973 2974 2975 2976 ... 2994 2995 2996 2997 2998 2999
In order to browse all rows of a table or column use the Table more() or Column more() methods. These let you interactively scroll through the rows much like the linux more command. Once part of the table or column is displayed the supported navigation keys are:
In order to fully control the print output use the Table pprint() or Column pprint() methods. These have keyword arguments max_lines, max_width, show_name, show_unit with meaning as shown below:
>>> arr = np.arange(3000, dtype=float).reshape(100, 30)
>>> t = Table(arr)
>>> t['col0'].format = '%e'
>>> t['col1'].format = '%.6f'
>>> t['col0'].unit = 'km**2'
>>> t['col29'].unit = 'kg sec m**-2'
>>> t.pprint(max_lines=8, max_width=40)
col0 ... col29
km2 ... kg sec m**-2
------------ ... ------------
0.000000e+00 ... 29.0
3.000000e+01 ... 59.0
... ... ...
2.940000e+03 ... 2969.0
2.970000e+03 ... 2999.0
>>> t.pprint(max_lines=8, max_width=40, show_unit=True)
col0 ... col29
km2 ... kg sec m**-2
------------ ... ------------
0.000000e+00 ... 29.0
3.000000e+01 ... 59.0
... ... ...
2.940000e+03 ... 2969.0
2.970000e+03 ... 2999.0
>>> t.pprint(max_lines=8, max_width=40, show_name=False)
km2 ... kg sec m**-2
------------ ... ------------
0.000000e+00 ... 29.0
3.000000e+01 ... 59.0
6.000000e+01 ... 89.0
... ... ...
2.940000e+03 ... 2969.0
2.970000e+03 ... 2999.0
In order to force printing all values regardless of the output length or width set max_lines or max_width to -1, respectively. For the wide table in this example one sees 6 lines of wrapped output like the following:
>>> t.pprint(max_lines=6, max_width=-1)
col0 col1 col2 col3 col4 col5 col6 col7 col8 col
9 col10 col11 col12 col13 col14 col15 col16 col17 col18 col19 col20
col21 col22 col23 col24 col25 col26 col27 col28 col29
------------ ----------- ------ ------ ------ ------ ------ ------ ------ ----
-- ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ -----
- ------ ------ ------ ------ ------ ------ ------ ------ ------
0.000000e+00 1.000000 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9
.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.
0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0
3.000000e+01 31.000000 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39
.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0 50.
0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0
... ... ... ... ... ... ... ... ... .
.. ... ... ... ... ... ... ... ... ... ... ..
. ... ... ... ... ... ... ... ... ...
2.970000e+03 2971.000000 2972.0 2973.0 2974.0 2975.0 2976.0 2977.0 2978.0 2979
.0 2980.0 2981.0 2982.0 2983.0 2984.0 2985.0 2986.0 2987.0 2988.0 2989.0 2990.
0 2991.0 2992.0 2993.0 2994.0 2995.0 2996.0 2997.0 2998.0 2999.0
For columns the syntax and behavior of pprint() is the same except that there is no max_width keyword argument:
>>> t['col3'].pprint(max_lines=8)
col3
------
3.0
33.0
63.0
...
2943.0
2973.0
In order to get the formatted output for manipulation or writing to a file use the Table pformat() or Column pformat() methods. These behave just as for pprint() but return a list corresponding to each formatted line in the pprint() output.
>>> lines = t['col3'].pformat(max_lines=8)
>>> lines
[' col3 ', '------', ' 3.0', ' 33.0', ' 63.0', ' ...', '2943.0', '2973.0']
If a column has more than one dimension then each element of the column is itself an array. In the example below there are 3 rows, each of which is a 2 x 2 array. The formatted output for such a column shows only the first and last value of each row element and indicates the array dimensions in the column name header:
>>> from astropy.table import Table, Column
>>> import numpy as np
>>> t = Table()
>>> arr = [ np.array([[ 1, 2],
... [10, 20]]),
... np.array([[ 3, 4],
... [30, 40]]),
... np.array([[ 5, 6],
... [50, 60]]) ]
>>> t['a'] = arr
>>> t['a'].shape
(3, 2, 2)
>>> t.pprint()
a [2,2]
-------
1 .. 20
3 .. 40
5 .. 60
In order to see all the data values for a multidimensional column use the column representation. This uses the standard numpy mechanism for printing any array:
>>> t['a']
<Column name='a' unit=None format=None description=None>
array([[[ 1, 2],
[10, 20]],
[[ 3, 4],
[30, 40]],
[[ 5, 6],
[50, 60]]])