Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

""" 

Affine nilTemperley Lieb Algebra of type A 

""" 

#***************************************************************************** 

# Copyright (C) 2010 Anne Schilling <anne at math.ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from sage.categories.all import AlgebrasWithBasis 

from sage.combinat.root_system.cartan_type import CartanType 

from sage.combinat.root_system.weyl_group import WeylGroup 

from sage.rings.ring import Ring 

from sage.rings.all import ZZ 

from sage.combinat.free_module import CombinatorialFreeModule 

from sage.misc.cachefunc import cached_method 

 

class AffineNilTemperleyLiebTypeA(CombinatorialFreeModule): 

r""" 

Constructs the affine nilTemperley Lieb algebra of type `A_{n-1}^{(1)}` as used in [Pos2005]_. 

 

INPUT: 

 

- ``n`` -- a positive integer 

 

The affine nilTemperley Lieb algebra is generated by `a_i` for `i=0,1,\ldots,n-1` 

subject to the relations `a_i a_i = a_i a_{i+1} a_i = a_{i+1} a_i a_{i+1} = 0` and 

`a_i a_j = a_j a_i` for `i-j \not \equiv \pm 1`, where the indices are taken modulo `n`. 

 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(4) 

sage: a = A.algebra_generators(); a 

Finite family {0: a0, 1: a1, 2: a2, 3: a3} 

sage: a[1]*a[2]*a[0] == a[1]*a[0]*a[2] 

True 

sage: a[0]*a[3]*a[0] 

0 

sage: A.an_element() 

2*a0 + 1 + 3*a1 + a0*a1*a2*a3 

""" 

 

def __init__(self, n, R = ZZ, prefix = 'a'): 

""" 

Initiates the affine nilTemperley Lieb algebra over the ring `R`. 

 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(3, prefix="a"); A 

The affine nilTemperley Lieb algebra A3 over the ring Integer Ring 

sage: TestSuite(A).run() 

sage: A = AffineNilTemperleyLiebTypeA(3, QQ); A 

The affine nilTemperley Lieb algebra A3 over the ring Rational Field 

""" 

if not isinstance(R, Ring): 

raise TypeError("Argument R must be a ring.") 

self._cartan_type = CartanType(['A',n-1,1]) 

self._n = n 

W = WeylGroup(self._cartan_type) 

self._prefix = prefix 

self._index_set = W.index_set() 

self._base_ring = R 

category = AlgebrasWithBasis(R) 

CombinatorialFreeModule.__init__(self, R, W, category = category) 

 

def _element_constructor_(self, w): 

""" 

Constructs a basis element from an element of the Weyl group. 

 

If `w = w_1 ... w_k` is a reduced word for `w`, then `A(w)` returns 

zero if `w` contains braid relations. 

TODO: Once the functorial construction is in sage, perhaps this should be 

handled constructing the affine nilTemperley Lieb algebra as a quotient algebra. 

 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(3, prefix="a") 

sage: W = A.weyl_group() 

sage: w = W.from_reduced_word([2,1,2]) 

sage: A(w) 

0 

sage: w = W.from_reduced_word([2,1]) 

sage: A(w) 

a2*a1 

""" 

W = self.weyl_group() 

assert(w in W) 

word = w.reduced_word() 

if all( self.has_no_braid_relation(W.from_reduced_word(word[:i]), word[i]) for i in range(len(word)) ): 

return self.monomial(w) 

else: 

return self.zero() 

 

@cached_method 

def one_basis(self): 

""" 

Returns the unit of the underlying Weyl group, which index 

the one of this algebra, as per 

:meth:`AlgebrasWithBasis.ParentMethods.one_basis`. 

 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(3) 

sage: A.one_basis() 

[1 0 0] 

[0 1 0] 

[0 0 1] 

sage: A.one_basis() == A.weyl_group().one() 

True 

sage: A.one() 

1 

""" 

return self.weyl_group().one() 

 

def _repr_(self): 

""" 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(3); A 

The affine nilTemperley Lieb algebra A3 over the ring Integer Ring 

""" 

return "The affine nilTemperley Lieb algebra A%s over the ring %s"%(self._n, self._base_ring) 

 

def weyl_group(self): 

""" 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(3) 

sage: A.weyl_group() 

Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root space) 

""" 

return self.basis().keys() 

 

def index_set(self): 

""" 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(3) 

sage: A.index_set() 

(0, 1, 2) 

""" 

return self._index_set 

 

@cached_method 

def algebra_generators(self): 

""" 

Returns the generators `a_i` for `i=0,1,2,\ldots,n-1`. 

 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(3) 

sage: a = A.algebra_generators();a 

Finite family {0: a0, 1: a1, 2: a2} 

sage: a[1] 

a1 

""" 

return self.weyl_group().simple_reflections().map(self.monomial) 

 

def algebra_generator(self, i): 

""" 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(3) 

sage: A.algebra_generator(1) 

a1 

sage: A = AffineNilTemperleyLiebTypeA(3, prefix = 't') 

sage: A.algebra_generator(1) 

t1 

""" 

return self.algebra_generators()[i] 

 

def product_on_basis(self, w, w1): 

""" 

Returns `a_w a_{w1}`, where `w` and `w1` are in the Weyl group 

assuming that `w` does not contain any braid relations. 

 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(5) 

sage: W = A.weyl_group() 

sage: s = W.simple_reflections() 

sage: [A.product_on_basis(s[1],x) for x in s] 

[a1*a0, 0, a1*a2, a3*a1, a4*a1] 

 

sage: a = A.algebra_generators() 

sage: x = a[1] * a[2] 

sage: x 

a1*a2 

sage: x * a[1] 

0 

sage: x * a[2] 

0 

sage: x * a[0] 

a1*a2*a0 

 

sage: [x * a[1] for x in a] 

[a0*a1, 0, a2*a1, a3*a1, a4*a1] 

 

sage: w = s[1]*s[2]*s[1] 

sage: A.product_on_basis(w,s[1]) 

Traceback (most recent call last): 

... 

AssertionError 

""" 

assert(self(w) != self.zero()) 

for i in w1.reduced_word(): 

if self.has_no_braid_relation(w, i): 

w = w.apply_simple_reflection(i) 

else: 

return self.zero() 

return self.monomial(w) 

 

@cached_method 

def has_no_braid_relation(self, w, i): 

""" 

Assuming that `w` contains no relations of the form `s_i^2` or `s_i s_{i+1} s_i` or 

`s_i s_{i-1} s_i`, tests whether `w s_i` contains terms of this form. 

 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(5) 

sage: W = A.weyl_group() 

sage: s=W.simple_reflections() 

sage: A.has_no_braid_relation(s[2]*s[1]*s[0]*s[4]*s[3],0) 

False 

sage: A.has_no_braid_relation(s[2]*s[1]*s[0]*s[4]*s[3],2) 

True 

sage: A.has_no_braid_relation(s[4],2) 

True 

""" 

if w == w.parent().one(): 

return True 

if i in w.descents(): 

return False 

s = w.parent().simple_reflections() 

wi = w*s[i] 

adjacent = [(i-1)%w.parent().n, (i+1)%w.parent().n] 

for j in adjacent: 

if j in w.descents(): 

if j in wi.descents(): 

return False 

else: 

return True 

return self.has_no_braid_relation(w*s[w.first_descent()],i) 

 

def _repr_term(self, t, short_display=True): 

""" 

EXAMPLES:: 

 

sage: A = AffineNilTemperleyLiebTypeA(3) 

sage: W = A.weyl_group() 

sage: A._repr_term(W.from_reduced_word([1,2,0])) 

'a1*a2*a0' 

sage: A._repr_term(W.from_reduced_word([1,2,0]), short_display = False) 

'a[1]*a[2]*a[0]' 

""" 

redword = t.reduced_word() 

if len(redword) == 0: 

return "1" 

elif short_display: 

return "*".join("%s%d"%(self._prefix, i) for i in redword) 

else: 

return "*".join("%s[%d]"%(self._prefix, i) for i in redword)