Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

""" 

Elements of Finite Algebras 

""" 

  

#***************************************************************************** 

# Copyright (C) 2011 Johan Bosman <johan.g.bosman@gmail.com> 

# Copyright (C) 2011, 2013 Peter Bruin <peter.bruin@math.uzh.ch> 

# Copyright (C) 2011 Michiel Kosters <kosters@gmail.com> 

# Copyright (C) 2017 Simon King <simon.king@uni-jena.de> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from six.moves import range 

  

import re 

  

from sage.misc.lazy_attribute import lazy_attribute 

from sage.matrix.matrix_space import MatrixSpace 

from sage.structure.element import is_Matrix 

from sage.modules.free_module_element import vector 

from sage.rings.integer import Integer 

  

from cpython.object cimport PyObject_RichCompare as richcmp 

  

cpdef FiniteDimensionalAlgebraElement unpickle_FiniteDimensionalAlgebraElement(A, vec, mat): 

""" 

Helper for unpickling of finite dimensional algebra elements. 

  

TESTS:: 

  

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[1,1,0], [0,1,1], [0,1,1]]), Matrix([[0,0,1], [0,1,0], [1,0,0]])]) 

sage: x = B([1,2,3]) 

sage: loads(dumps(x)) == x # indirect doctest 

True 

  

""" 

cdef FiniteDimensionalAlgebraElement x = A.element_class.__new__(A.element_class) 

AlgebraElement.__init__(x, A) 

x._vector = vec 

x.__matrix = mat 

return x 

  

cdef class FiniteDimensionalAlgebraElement(AlgebraElement): 

r""" 

Create an element of a :class:`FiniteDimensionalAlgebra` using a multiplication table. 

  

INPUT: 

  

- ``A`` -- a :class:`FiniteDimensionalAlgebra` which will be the parent 

  

- ``elt`` -- vector, matrix or element of the base field 

(default: ``None``) 

  

- ``check`` -- boolean (default: ``True``); if ``False`` and ``elt`` is a 

matrix, assume that it is known to be the matrix of an element 

  

If ``elt`` is a vector or a matrix consisting of a single row, it is 

interpreted as a vector of coordinates with respect to the given basis 

of ``A``. If ``elt`` is a square matrix, it is interpreted as a 

multiplication matrix with respect to this basis. 

  

EXAMPLES:: 

  

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1,0], [0,1]]), Matrix([[0,1], [0,0]])]) 

sage: A(17) 

2*e0 

sage: A([1,1]) 

e0 + e1 

""" 

def __init__(self, A, elt=None, check=True): 

""" 

TESTS:: 

  

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1,0], [0,1]]), Matrix([[0,1], [0,0]])]) 

sage: A(QQ(4)) 

Traceback (most recent call last): 

... 

TypeError: elt should be a vector, a matrix, or an element of the base field 

  

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [-1,0]])]) 

sage: elt = B(Matrix([[1,1], [-1,1]])); elt 

e0 + e1 

sage: TestSuite(elt).run() 

sage: B(Matrix([[0,1], [1,0]])) 

Traceback (most recent call last): 

... 

ValueError: matrix does not define an element of the algebra 

""" 

AlgebraElement.__init__(self, A) 

k = A.base_ring() 

n = A.degree() 

if elt is None: 

self._vector = MatrixSpace(k,1,n)() 

self.__matrix = MatrixSpace(k, n)() 

else: 

if isinstance(elt, int): 

elt = Integer(elt) 

elif isinstance(elt, list): 

elt = MatrixSpace(k,1,n)(elt) 

if A == elt.parent(): 

mat = (<FiniteDimensionalAlgebraElement> elt).__matrix 

if mat is None: 

self.__matrix = None 

else: 

self.__matrix = mat.base_extend(k) 

self._vector = elt._vector.base_extend(k) 

elif k.has_coerce_map_from(elt.parent()): 

e = k(elt) 

if e == 0: 

self._vector = MatrixSpace(k, 1, n)() 

self.__matrix = MatrixSpace(k, n)() 

elif A.is_unitary(): 

self._vector = A._one * e 

self.__matrix = MatrixSpace(k, n)(1) * e 

else: 

raise TypeError("algebra is not unitary") 

elif isinstance(elt, Vector): 

self._vector = MatrixSpace(k,1,n)(list(elt)) 

elif is_Matrix(elt): 

if elt.ncols() != n: 

raise ValueError("matrix does not define an element of the algebra") 

if elt.nrows() == 1: 

self._vector = elt.__copy__() 

else: 

if not A.is_unitary(): 

raise TypeError("algebra is not unitary") 

self._vector = A._one * elt 

if check and self._matrix != elt: 

raise ValueError("matrix does not define an element of the algebra") 

else: 

raise TypeError("elt should be a vector, a matrix, " + 

"or an element of the base field") 

  

def __reduce__(self): 

""" 

TESTS:: 

  

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[1,1,0], [0,1,1], [0,1,1]]), Matrix([[0,0,1], [0,1,0], [1,0,0]])]) 

sage: x = B([1,2,3]) 

sage: loads(dumps(x)) == x # indirect doctest 

True 

sage: loads(dumps(x)) is x 

False 

  

""" 

return unpickle_FiniteDimensionalAlgebraElement, (self._parent, self._vector, self.__matrix) 

  

def __setstate__(self, state): 

""" 

This method serves at unpickling old pickles. 

  

TESTS:: 

  

sage: A = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: x = A.element_class.__new__(A.element_class) 

sage: x.__setstate__((A, {'_vector':vector([1,1,1]), '_matrix':matrix(QQ,3,[1,1,0, 0,1,0, 0,0,1])})) 

sage: x 

e0 + e1 + e2 

sage: x.matrix() 

[1 1 0] 

[0 1 0] 

[0 0 1] 

  

Note that in old pickles, the vector actually is a vector. However, 

it is converted into a single-row matrix, in the new implementation:: 

  

sage: x.vector() 

(1, 1, 1) 

  

""" 

self._parent, D = state 

v = D.pop('_vector') 

if isinstance(v, Vector): 

self._vector = MatrixSpace(self._parent.base_ring(), 1,len(v))(list(v)) 

else: 

self._vector = v 

self.__matrix = D.pop('_matrix', None) 

try: 

self.__dict__ = D 

except AttributeError: 

pass 

  

@property 

def _matrix(self): 

""" 

TESTS:: 

  

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[1,1,0], [0,1,1], [0,1,1]]), Matrix([[0,0,1], [0,1,0], [1,0,0]])]) 

sage: x = B([1,2,3]) 

sage: x._matrix 

[3 2 3] 

[0 6 2] 

[3 2 2] 

""" 

cdef Py_ssize_t i 

cdef tuple table 

if self.__matrix is None: 

A = self.parent() 

table = <tuple> A.table() 

ret = sum(self._vector[0,i] * table[i] for i in xrange(A.degree())) 

self.__matrix = MatrixSpace(A.base_ring(), A.degree())(ret) 

return self.__matrix 

  

def vector(self): 

""" 

Return ``self`` as a vector. 

  

EXAMPLES:: 

  

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: B(5).vector() 

(5, 0, 5) 

""" 

#By :trac:`23707`, ``self._vector`` now is a single row matrix, 

#not a vector, which results in a speed-up. For backwards compatibility, 

#this method still returns a vector. 

return self._vector[0] 

  

def matrix(self): 

""" 

Return the matrix for multiplication by ``self`` from the right. 

  

EXAMPLES:: 

  

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: B(5).matrix() 

[5 0 0] 

[0 5 0] 

[0 0 5] 

""" 

return self._matrix 

  

def monomial_coefficients(self, copy=True): 

""" 

Return a dictionary whose keys are indices of basis elements in 

the support of ``self`` and whose values are the corresponding 

coefficients. 

  

INPUT: 

  

- ``copy`` -- ignored 

  

EXAMPLES:: 

  

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [-1,0]])]) 

sage: elt = B(Matrix([[1,1], [-1,1]])) 

sage: elt.monomial_coefficients() 

{0: 1, 1: 1} 

""" 

cdef Py_ssize_t i 

return {i:self._vector[0,i] for i in range(self._vector.ncols())} 

  

def left_matrix(self): 

""" 

Return the matrix for multiplication by ``self`` from the left. 

  

EXAMPLES:: 

  

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,0,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,1,0], [0,0,1]])]) 

sage: C([1,2,0]).left_matrix() 

[1 0 0] 

[0 1 0] 

[0 2 0] 

  

""" 

A = self.parent() 

if A.is_commutative(): 

return self._matrix 

return sum([self._vector[0,i] * A.left_table()[i] for 

i in range(A.degree())]) 

  

def _repr_(self): 

""" 

Return the string representation of ``self``. 

  

EXAMPLES:: 

  

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1,0], [0,1]]), Matrix([[0,1], [0,0]])]) 

sage: A(1) 

e0 

""" 

s = " " 

A = self.parent() 

m = A.degree() 

coeffs = self._vector.list() 

atomic = A.base_ring()._repr_option('element_is_atomic') 

non_zero = False 

for n in range(m): 

x = coeffs[n] 

if x: 

if non_zero: 

s += " + " 

non_zero = True 

x = y = repr(x) 

if y.find('-') == 0: 

y = y[1:] 

if not atomic and (y.find("+") != -1 or y.find("-") != -1): 

x = "({})".format(x) 

var = "*{}".format(A._names[n]) 

s += "{}{}".format(x, var) 

s = s.replace(" + -", " - ") 

s = re.sub(r' 1(\.0+)?\*',' ', s) 

s = re.sub(r' -1(\.0+)?\*',' -', s) 

if s == " ": 

return "0" 

return s[1:] 

  

def _latex_(self): 

r""" 

Return the LaTeX representation of ``self``. 

  

EXAMPLES:: 

  

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1,0], [0,1]]), Matrix([[0,1], [0,0]])]) 

sage: latex(A(1)) # indirect doctest 

\left(\begin{array}{rr} 

1 & 0 \\ 

0 & 1 

\end{array}\right) 

""" 

from sage.misc.latex import latex 

return latex(self.matrix()) 

  

def __getitem__(self, m): 

""" 

Return the `m`-th coefficient of ``self`` 

  

EXAMPLES:: 

  

sage: A = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: A([2,1/4,3])[2] 

3 

  

""" 

return self._vector[0,m] 

  

def __len__(self): 

""" 

EXAMPLES:: 

  

sage: A = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: len(A([2,1/4,3])) 

3 

  

""" 

return self._vector.ncols() 

  

## (Rich) comparison 

cpdef _richcmp_(self, right, int op): 

""" 

EXAMPLES:: 

  

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1,0], [0,1]]), Matrix([[0,1], [0,0]])]) 

sage: A(2) == 2 

True 

sage: A(2) == 3 

False 

sage: A(2) == GF(5)(2) 

False 

  

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: B(1) != 0 

True 

  

By :trac:`23707`, an ordering is defined on finite-dimensional algebras, corresponding 

to the ordering of the defining vectors; this may be handy if the vector space basis of 

the algebra corresponds to the standard monomials of the relation ideal, when 

the algebra is considered as a quotient of a path algebra. :: 

  

sage: A(1) > 0 

True 

sage: A(1) < 0 

False 

sage: A(1) >= 0 

True 

sage: A(1) <= 0 

False 

  

""" 

return richcmp(self._vector, <FiniteDimensionalAlgebraElement>right._vector, op) 

  

cpdef _add_(self, other): 

""" 

EXAMPLES:: 

  

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1,0], [0,1]]), Matrix([[0,1], [0,0]])]) 

sage: A.basis()[0] + A.basis()[1] 

e0 + e1 

""" 

return self._parent.element_class(self._parent, self._vector + <FiniteDimensionalAlgebraElement>other._vector) 

  

cpdef _sub_(self, other): 

""" 

EXAMPLES:: 

  

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1,0], [0,1]]), Matrix([[0,1], [0,0]])]) 

sage: A.basis()[0] - A.basis()[1] 

e0 + 2*e1 

""" 

return self._parent.element_class(self._parent, self._vector - <FiniteDimensionalAlgebraElement>other._vector) 

  

cpdef _mul_(self, other): 

""" 

EXAMPLES:: 

  

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,0,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,1,0], [0,0,1]])]) 

sage: C.basis()[1] * C.basis()[2] 

e1 

""" 

return self._parent.element_class(self._parent, self._vector * <FiniteDimensionalAlgebraElement>(other)._matrix) 

  

cpdef _lmul_(self, Element other): 

""" 

TESTS:: 

  

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,0,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,1,0], [0,0,1]])]) 

sage: c = C.random_element() 

sage: c * 2 == c + c 

True 

""" 

if not self._parent.base_ring().has_coerce_map_from(other.parent()): 

raise TypeError("unsupported operand parent(s) for *: '{}' and '{}'" 

.format(self.parent(), other.parent())) 

return self._parent.element_class(self._parent, self._vector * other) 

  

cpdef _rmul_(self, Element other): 

""" 

TESTS:: 

  

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,0,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,1,0], [0,0,1]])]) 

sage: c = C.random_element() 

sage: 2 * c == c + c 

True 

""" 

if not self._parent.base_ring().has_coerce_map_from(other.parent()): 

raise TypeError("unsupported operand parent(s) for *: '{}' and '{}'" 

.format(self.parent(), other.parent())) 

return self._parent.element_class(self._parent, other * self._vector) # Note the different order 

  

def __pow__(self, n, m): 

""" 

Return ``self`` raised to the power ``n``. 

  

EXAMPLES:: 

  

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: b = B([2,3,4]) 

sage: b^6 

64*e0 + 576*e1 + 4096*e2 

""" 

A = self.parent() 

if not (A._assume_associative or A.is_associative()): 

raise TypeError("algebra is not associative") 

if n > 0: 

return A.element_class(A, self._vector * self._matrix ** (n - 1)) 

if not A.is_unitary(): 

raise TypeError("algebra is not unitary") 

if n == 0: 

return A.one() 

cdef FiniteDimensionalAlgebraElement a = <FiniteDimensionalAlgebraElement>(~self) 

return A.element_class(A, a._vector * a.__matrix ** (-n - 1)) 

  

def __invert__(self): 

""" 

TESTS:: 

  

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [-1,0]])]) 

sage: x = C([1,2]) 

sage: y = ~x; y # indirect doctest 

1/5*e0 - 2/5*e1 

sage: x*y 

e0 

sage: C.one() 

e0 

""" 

return self.inverse() 

  

def is_invertible(self): 

""" 

Return ``True`` if ``self`` has a two-sided multiplicative 

inverse. 

  

This assumes that the algebra to which ``self`` belongs is 

associative. 

  

.. NOTE:: 

  

If an element of a unitary finite-dimensional algebra over a field 

admits a left inverse, then this is the unique left 

inverse, and it is also a right inverse. 

  

EXAMPLES:: 

  

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [-1,0]])]) 

sage: C([1,2]).is_invertible() 

True 

sage: C(0).is_invertible() 

False 

""" 

return self._inverse is not None 

  

@property 

def _inverse(self): 

""" 

The two-sided inverse of ``self``, if it exists; otherwise this 

is ``None``. 

  

This assumes that the algebra to which ``self`` belongs is 

associative. 

  

EXAMPLES:: 

  

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [-1,0]])]) 

sage: C([1,2])._inverse 

1/5*e0 - 2/5*e1 

sage: C(0)._inverse is None 

True 

""" 

cdef FiniteDimensionalAlgebraElement y 

if self.__inverse is None: 

A = self.parent() 

if not A.is_unitary(): 

self.__inverse = False 

try: 

a = self._matrix.inverse() 

y = FiniteDimensionalAlgebraElement(A, a, check=True) 

y.__inverse = self 

self.__inverse = y 

except (ZeroDivisionError, ValueError): 

self.__inverse = False 

if self.__inverse is False: 

return None 

return self.__inverse 

  

def inverse(self): 

""" 

Return the two-sided multiplicative inverse of ``self``, if it 

exists. 

  

This assumes that the algebra to which ``self`` belongs is 

associative. 

  

.. NOTE:: 

  

If an element of a finite-dimensional unitary associative 

algebra over a field admits a left inverse, then this is the 

unique left inverse, and it is also a right inverse. 

  

EXAMPLES:: 

  

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [-1,0]])]) 

sage: C([1,2]).inverse() 

1/5*e0 - 2/5*e1 

""" 

A = self.parent() 

if not A.is_unitary(): 

raise TypeError("algebra is not unitary") 

  

if self._inverse is None: 

raise ZeroDivisionError("element is not invertible") 

return self._inverse 

  

def is_zerodivisor(self): 

""" 

Return ``True`` if ``self`` is a left or right zero-divisor. 

  

EXAMPLES:: 

  

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [0,0]])]) 

sage: C([1,0]).is_zerodivisor() 

False 

sage: C([0,1]).is_zerodivisor() 

True 

""" 

return self.matrix().det() == 0 or self.left_matrix().det() == 0 

  

def is_nilpotent(self): 

""" 

Return ``True`` if ``self`` is nilpotent. 

  

EXAMPLES:: 

  

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [0,0]])]) 

sage: C([1,0]).is_nilpotent() 

False 

sage: C([0,1]).is_nilpotent() 

True 

  

sage: A = FiniteDimensionalAlgebra(QQ, [Matrix([0])]) 

sage: A([1]).is_nilpotent() 

True 

""" 

A = self.parent() 

if not (A._assume_associative or A.is_associative()): 

raise TypeError("algebra is not associative") 

return self.matrix() ** A.degree() == 0 

  

def minimal_polynomial(self): 

""" 

Return the minimal polynomial of ``self``. 

  

EXAMPLES:: 

  

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: B(0).minimal_polynomial() 

x 

sage: b = B.random_element() 

sage: f = b.minimal_polynomial(); f # random 

x^3 + 1/2*x^2 - 7/16*x + 1/16 

sage: f(b) == 0 

True 

""" 

A = self.parent() 

if not A.is_unitary(): 

raise TypeError("algebra is not unitary") 

if not (A._assume_associative or A.is_associative()): 

raise TypeError("algebra is not associative") 

return self.matrix().minimal_polynomial() 

  

def characteristic_polynomial(self): 

""" 

Return the characteristic polynomial of ``self``. 

  

.. NOTE:: 

  

This function just returns the characteristic polynomial 

of the matrix of right multiplication by ``self``. This 

may not be a very meaningful invariant if the algebra is 

not unitary and associative. 

  

EXAMPLES:: 

  

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: B(0).characteristic_polynomial() 

x^3 

sage: b = B.random_element() 

sage: f = b.characteristic_polynomial(); f # random 

x^3 - 8*x^2 + 16*x 

sage: f(b) == 0 

True 

""" 

return self.matrix().characteristic_polynomial()