Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

""" 

Finite-Dimensional Algebras 

""" 

#***************************************************************************** 

# Copyright (C) 2011 Johan Bosman <johan.g.bosman@gmail.com> 

# Copyright (C) 2011, 2013 Peter Bruin <peter.bruin@math.uzh.ch> 

# Copyright (C) 2011 Michiel Kosters <kosters@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import absolute_import 

from six.moves import range 

 

from .finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement 

from .finite_dimensional_algebra_ideal import FiniteDimensionalAlgebraIdeal 

 

from sage.rings.integer_ring import ZZ 

 

from sage.categories.magmatic_algebras import MagmaticAlgebras 

from sage.matrix.constructor import Matrix, matrix 

from sage.structure.element import is_Matrix 

from sage.modules.free_module_element import vector 

from sage.rings.ring import Algebra 

from sage.structure.category_object import normalize_names 

from sage.structure.unique_representation import UniqueRepresentation 

 

from sage.misc.cachefunc import cached_method 

from functools import reduce 

 

 

class FiniteDimensionalAlgebra(UniqueRepresentation, Algebra): 

""" 

Create a finite-dimensional `k`-algebra from a multiplication table. 

 

INPUT: 

 

- ``k`` -- a field 

 

- ``table`` -- a list of matrices 

 

- ``names`` -- (default: ``'e'``) string; names for the basis 

elements 

 

- ``assume_associative`` -- (default: ``False``) boolean; if 

``True``, then the category is set to ``category.Associative()`` 

and methods requiring associativity assume this 

 

- ``category`` -- (default: 

``MagmaticAlgebras(k).FiniteDimensional().WithBasis()``) 

the category to which this algebra belongs 

 

The list ``table`` must have the following form: there exists a 

finite-dimensional `k`-algebra of degree `n` with basis 

`(e_1, \ldots, e_n)` such that the `i`-th element of ``table`` is the 

matrix of right multiplication by `e_i` with respect to the basis 

`(e_1, \ldots, e_n)`. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A 

Finite-dimensional algebra of degree 2 over Finite Field of size 3 

sage: TestSuite(A).run() 

 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: B 

Finite-dimensional algebra of degree 3 over Rational Field 

 

TESTS:: 

 

sage: A.category() 

Category of finite dimensional magmatic algebras with basis over Finite Field of size 3 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])], assume_associative=True) 

sage: A.category() 

Category of finite dimensional associative algebras with basis over Finite Field of size 3 

""" 

@staticmethod 

def __classcall_private__(cls, k, table, names='e', assume_associative=False, 

category=None): 

""" 

Normalize input. 

 

TESTS:: 

 

sage: table = [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])] 

sage: A1 = FiniteDimensionalAlgebra(GF(3), table) 

sage: A2 = FiniteDimensionalAlgebra(GF(3), table, names='e') 

sage: A3 = FiniteDimensionalAlgebra(GF(3), table, names=['e0', 'e1']) 

sage: A1 is A2 and A2 is A3 

True 

 

The ``assume_associative`` keyword is built into the category:: 

 

sage: from sage.categories.magmatic_algebras import MagmaticAlgebras 

sage: cat = MagmaticAlgebras(GF(3)).FiniteDimensional().WithBasis() 

sage: A1 = FiniteDimensionalAlgebra(GF(3), table, category=cat.Associative()) 

sage: A2 = FiniteDimensionalAlgebra(GF(3), table, assume_associative=True) 

sage: A1 is A2 

True 

 

Uniqueness depends on the category:: 

 

sage: cat = Algebras(GF(3)).FiniteDimensional().WithBasis() 

sage: A1 = FiniteDimensionalAlgebra(GF(3), table) 

sage: A2 = FiniteDimensionalAlgebra(GF(3), table, category=cat) 

sage: A1 == A2 

False 

sage: A1 is A2 

False 

 

Checking that equality is still as expected:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), table) 

sage: B = FiniteDimensionalAlgebra(GF(5), [Matrix([0])]) 

sage: A == A 

True 

sage: B == B 

True 

sage: A == B 

False 

sage: A != A 

False 

sage: B != B 

False 

sage: A != B 

True 

""" 

n = len(table) 

table = [b.base_extend(k) for b in table] 

for b in table: 

b.set_immutable() 

if not (is_Matrix(b) and b.dimensions() == (n, n)): 

raise ValueError("input is not a multiplication table") 

table = tuple(table) 

 

cat = MagmaticAlgebras(k).FiniteDimensional().WithBasis() 

cat = cat.or_subcategory(category) 

if assume_associative: 

cat = cat.Associative() 

 

names = normalize_names(n, names) 

 

return super(FiniteDimensionalAlgebra, cls).__classcall__(cls, k, table, 

names, category=cat) 

 

def __init__(self, k, table, names='e', category=None): 

""" 

TESTS:: 

 

sage: A = FiniteDimensionalAlgebra(QQ, []) 

sage: A 

Finite-dimensional algebra of degree 0 over Rational Field 

sage: type(A) 

<class 'sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra.FiniteDimensionalAlgebra_with_category'> 

sage: TestSuite(A).run() 

 

sage: B = FiniteDimensionalAlgebra(GF(7), [Matrix([1])]) 

sage: B 

Finite-dimensional algebra of degree 1 over Finite Field of size 7 

sage: TestSuite(B).run() 

 

sage: C = FiniteDimensionalAlgebra(CC, [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: C 

Finite-dimensional algebra of degree 2 over Complex Field with 53 bits of precision 

sage: TestSuite(C).run() 

 

sage: FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]])]) 

Traceback (most recent call last): 

... 

ValueError: input is not a multiplication table 

 

sage: D.<a,b> = FiniteDimensionalAlgebra(RR, [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [-1, 0]])]) 

sage: D.gens() 

(a, b) 

 

sage: E = FiniteDimensionalAlgebra(QQ, [Matrix([0])]) 

sage: E.gens() 

(e,) 

""" 

self._table = table 

self._assume_associative = "Associative" in category.axioms() 

# No further validity checks necessary! 

Algebra.__init__(self, base_ring=k, names=names, category=category) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

TESTS:: 

 

sage: FiniteDimensionalAlgebra(RR, [Matrix([1])])._repr_() 

'Finite-dimensional algebra of degree 1 over Real Field with 53 bits of precision' 

""" 

return "Finite-dimensional algebra of degree {} over {}".format(self.degree(), self.base_ring()) 

 

def _coerce_map_from_(self, S): 

""" 

TESTS:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A.has_coerce_map_from(ZZ) 

True 

sage: A.has_coerce_map_from(GF(3)) 

True 

sage: A.has_coerce_map_from(GF(5)) 

False 

sage: A.has_coerce_map_from(QQ) 

False 

""" 

return S == self or (self.base_ring().has_coerce_map_from(S) and self.is_unitary()) 

 

Element = FiniteDimensionalAlgebraElement 

 

def _element_constructor_(self, x): 

""" 

TESTS:: 

 

sage: A = FiniteDimensionalAlgebra(QQ, [Matrix([0])]) 

sage: a = A(0) 

sage: a.parent() 

Finite-dimensional algebra of degree 1 over Rational Field 

sage: A(1) 

Traceback (most recent call last): 

... 

TypeError: algebra is not unitary 

 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: B(17) 

17*e0 + 17*e2 

""" 

return self.element_class(self, x) 

 

# This is needed because the default implementation 

# assumes that the algebra is unitary. 

from_base_ring = _element_constructor_ 

 

def _Hom_(self, B, category): 

""" 

Construct a homset of ``self`` and ``B``. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(QQ, [Matrix([1])]) 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A._Hom_(B, A.category()) 

Set of Homomorphisms from Finite-dimensional algebra of degree 1 over Rational Field to Finite-dimensional algebra of degree 2 over Rational Field 

""" 

cat = MagmaticAlgebras(self.base_ring()).FiniteDimensional().WithBasis() 

if category.is_subcategory(cat): 

from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_morphism import FiniteDimensionalAlgebraHomset 

return FiniteDimensionalAlgebraHomset(self, B, category=category) 

return super(FiniteDimensionalAlgebra, self)._Hom_(B, category) 

 

def ngens(self): 

""" 

Return the number of generators of ``self``, i.e., the degree 

of ``self`` over its base field. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A.ngens() 

2 

""" 

return len(self._table) 

 

degree = ngens 

 

@cached_method 

def gen(self, i): 

""" 

Return the `i`-th basis element of ``self``. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A.gen(0) 

e0 

""" 

return self.element_class(self, [j == i for j in range(self.ngens())]) 

 

def basis(self): 

""" 

Return a list of the basis elements of ``self``. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A.basis() 

[e0, e1] 

""" 

return list(self.gens()) 

 

def __iter__(self): 

""" 

Iterates over the elements of ``self``. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: list(A) 

[0, e0, 2*e0, e1, e0 + e1, 2*e0 + e1, 2*e1, e0 + 2*e1, 2*e0 + 2*e1] 

 

This is used in the :class:`Testsuite`'s when ``self`` is 

finite. 

""" 

if not self.is_finite(): 

raise NotImplementedError("object does not support iteration") 

V = self.zero().vector().parent() 

for v in V: 

yield self(v) 

 

def _ideal_class_(self, n=0): 

""" 

Return the ideal class of ``self`` (that is, the class that 

all ideals of ``self`` inherit from). 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A._ideal_class_() 

<class 'sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_ideal.FiniteDimensionalAlgebraIdeal'> 

""" 

return FiniteDimensionalAlgebraIdeal 

 

def table(self): 

""" 

Return the multiplication table of ``self``, as a list of 

matrices for right multiplication by the basis elements. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A.table() 

( 

[1 0] [0 1] 

[0 1], [0 0] 

) 

""" 

return self._table 

 

@cached_method 

def left_table(self): 

""" 

Return the list of matrices for left multiplication by the 

basis elements. 

 

EXAMPLES:: 

 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1],[-1,0]])]) 

sage: T = B.left_table(); T 

( 

[1 0] [ 0 1] 

[0 1], [-1 0] 

) 

 

We check immutability:: 

 

sage: T[0] = "vandalized by h4xx0r" 

Traceback (most recent call last): 

... 

TypeError: 'tuple' object does not support item assignment 

sage: T[1][0] = [13, 37] 

Traceback (most recent call last): 

... 

ValueError: matrix is immutable; please change a copy instead 

(i.e., use copy(M) to change a copy of M). 

""" 

B = self.table() 

n = self.degree() 

table = [Matrix([B[j][i] for j in range(n)]) for i in range(n)] 

for b in table: 

b.set_immutable() 

return tuple(table) 

 

def base_extend(self, F): 

""" 

Return ``self`` base changed to the field ``F``. 

 

EXAMPLES:: 

 

sage: C = FiniteDimensionalAlgebra(GF(2), [Matrix([1])]) 

sage: k.<y> = GF(4) 

sage: C.base_extend(k) 

Finite-dimensional algebra of degree 1 over Finite Field in y of size 2^2 

""" 

# Base extension of the multiplication table is done by __classcall_private__. 

return FiniteDimensionalAlgebra(F, self.table()) 

 

def cardinality(self): 

""" 

Return the cardinality of ``self``. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(7), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [2, 3]])]) 

sage: A.cardinality() 

49 

 

sage: B = FiniteDimensionalAlgebra(RR, [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [2, 3]])]) 

sage: B.cardinality() 

+Infinity 

 

sage: C = FiniteDimensionalAlgebra(RR, []) 

sage: C.cardinality() 

1 

""" 

n = self.degree() 

return ZZ.one() if not n else self.base_ring().cardinality() ** n 

 

def ideal(self, gens=None, given_by_matrix=False, side=None): 

""" 

Return the right ideal of ``self`` generated by ``gens``. 

 

INPUT: 

 

- ``A`` -- a :class:`FiniteDimensionalAlgebra` 

 

- ``gens`` -- (default: None) - either an element of ``A`` or a 

list of elements of ``A``, given as vectors, matrices, or 

FiniteDimensionalAlgebraElements. If ``given_by_matrix`` is 

``True``, then ``gens`` should instead be a matrix whose rows 

form a basis of an ideal of ``A``. 

 

- ``given_by_matrix`` -- boolean (default: ``False``) - if 

``True``, no checking is done 

 

- ``side`` -- ignored but necessary for coercions 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A.ideal(A([1,1])) 

Ideal (e0 + e1) of Finite-dimensional algebra of degree 2 over Finite Field of size 3 

""" 

return self._ideal_class_()(self, gens=gens, 

given_by_matrix=given_by_matrix) 

 

@cached_method 

def is_associative(self): 

""" 

Return ``True`` if ``self`` is associative. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1],[-1,0]])]) 

sage: A.is_associative() 

True 

 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,1]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,1], [0,0,0], [1,0,0]])]) 

sage: B.is_associative() 

False 

 

sage: e = B.basis() 

sage: (e[1]*e[2])*e[2]==e[1]*(e[2]*e[2]) 

False 

""" 

B = self.table() 

n = self.degree() 

for i in range(n): 

for j in range(n): 

eiej = B[j][i] 

if B[i]*B[j] != sum(eiej[k] * B[k] for k in range(n)): 

return False 

return True 

 

@cached_method 

def is_commutative(self): 

""" 

Return ``True`` if ``self`` is commutative. 

 

EXAMPLES:: 

 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: B.is_commutative() 

True 

 

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,0,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,1,0], [0,0,1]])]) 

sage: C.is_commutative() 

False 

""" 

# Equivalent to self.table() == self.left_table() 

B = self.table() 

for i in range(self.degree()): 

for j in range(i): 

if B[j][i] != B[i][j]: 

return False 

return True 

 

def is_finite(self): 

""" 

Return ``True`` if the cardinality of ``self`` is finite. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(7), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [2, 3]])]) 

sage: A.is_finite() 

True 

 

sage: B = FiniteDimensionalAlgebra(RR, [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [2, 3]])]) 

sage: B.is_finite() 

False 

 

sage: C = FiniteDimensionalAlgebra(RR, []) 

sage: C.is_finite() 

True 

""" 

return self.degree() == 0 or self.base_ring().is_finite() 

 

@cached_method 

def is_unitary(self): 

""" 

Return ``True`` if ``self`` has a two-sided multiplicative 

identity element. 

 

.. WARNING:: 

 

This uses linear algebra; thus expect wrong results when 

the base ring is not a field. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(QQ, []) 

sage: A.is_unitary() 

True 

 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [-1,0]])]) 

sage: B.is_unitary() 

True 

 

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[0,0], [0,0]]), Matrix([[0,0], [0,0]])]) 

sage: C.is_unitary() 

False 

 

sage: D = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[1,0], [0,1]])]) 

sage: D.is_unitary() 

False 

 

sage: E = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0],[1,0]]), Matrix([[0,1],[0,1]])]) 

sage: E.is_unitary() 

False 

 

sage: F = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,1]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,1], [0,0,0], [1,0,0]])]) 

sage: F.is_unitary() 

True 

 

sage: G = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,1]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [1,0,0]])]) 

sage: G.is_unitary() # Unique right identity, but no left identity. 

False 

""" 

n = self.degree() 

k = self.base_ring() 

if n == 0: 

self._one = matrix(k, 1, n) 

return True 

B1 = reduce(lambda x, y: x.augment(y), 

self._table, Matrix(k, n, 0)) 

B2 = reduce(lambda x, y: x.augment(y), 

self.left_table(), Matrix(k, n, 0)) 

# This is the vector obtained by concatenating the rows of the 

# n times n identity matrix: 

kone = k.one() 

kzero = k.zero() 

v = matrix(k, 1, n**2, (n - 1) * ([kone] + n * [kzero]) + [kone]) 

try: 

sol1 = B1.solve_left(v) 

sol2 = B2.solve_left(v) 

except ValueError: 

return False 

assert sol1 == sol2 

self._one = sol1 

return True 

 

def is_zero(self): 

""" 

Return ``True`` if ``self`` is the zero ring. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(QQ, []) 

sage: A.is_zero() 

True 

 

sage: B = FiniteDimensionalAlgebra(GF(7), [Matrix([0])]) 

sage: B.is_zero() 

False 

""" 

return self.degree() == 0 

 

def one(self): 

""" 

Return the multiplicative identity element of ``self``, if it 

exists. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(QQ, []) 

sage: A.one() 

0 

 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [-1,0]])]) 

sage: B.one() 

e0 

 

sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[0,0], [0,0]]), Matrix([[0,0], [0,0]])]) 

sage: C.one() 

Traceback (most recent call last): 

... 

TypeError: algebra is not unitary 

 

sage: D = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,1]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,1], [0,0,0], [1,0,0]])]) 

sage: D.one() 

e0 

 

sage: E = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,1]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [1,0,0]])]) 

sage: E.one() 

Traceback (most recent call last): 

... 

TypeError: algebra is not unitary 

""" 

if not self.is_unitary(): 

raise TypeError("algebra is not unitary") 

else: 

return self(self._one) 

 

def random_element(self, *args, **kwargs): 

""" 

Return a random element of ``self``. 

 

Optional input parameters are propagated to the ``random_element`` 

method of the underlying :class:`VectorSpace`. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A.random_element() # random 

e0 + 2*e1 

 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: B.random_element(num_bound=1000) # random 

215/981*e0 + 709/953*e1 + 931/264*e2 

""" 

return self(self.zero().vector().parent().random_element(*args, **kwargs)) 

 

def _is_valid_homomorphism_(self, other, im_gens): 

""" 

TESTS:: 

 

sage: A = FiniteDimensionalAlgebra(QQ, [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([1])]) 

sage: Hom(A, B)(Matrix([[1], [0]])) 

Morphism from Finite-dimensional algebra of degree 2 over Rational Field to Finite-dimensional algebra of degree 1 over Rational Field given by matrix 

[1] 

[0] 

sage: Hom(B, A)(Matrix([[1, 0]])) 

Morphism from Finite-dimensional algebra of degree 1 over Rational Field to Finite-dimensional algebra of degree 2 over Rational Field given by matrix 

[1 0] 

sage: H = Hom(A, A) 

sage: H(Matrix.identity(QQ, 2)) 

Morphism from Finite-dimensional algebra of degree 2 over Rational Field to Finite-dimensional algebra of degree 2 over Rational Field given by matrix 

[1 0] 

[0 1] 

sage: H(Matrix([[1, 0], [0, 0]])) 

Morphism from Finite-dimensional algebra of degree 2 over Rational Field to Finite-dimensional algebra of degree 2 over Rational Field given by matrix 

[1 0] 

[0 0] 

sage: H(Matrix([[1, 0], [1, 1]])) 

Traceback (most recent call last): 

... 

ValueError: relations do not all (canonically) map to 0 under map determined by images of generators 

sage: Hom(B, B)(Matrix([[2]])) 

Traceback (most recent call last): 

... 

ValueError: relations do not all (canonically) map to 0 under map determined by images of generators 

""" 

assert len(im_gens) == self.degree() 

 

B = self.table() 

for i,gi in enumerate(im_gens): 

for j,gj in enumerate(im_gens): 

eiej = B[j][i] 

if (sum([other(im_gens[k]) * v for k,v in enumerate(eiej)]) 

!= other(gi) * other(gj)): 

return False 

return True 

 

def quotient_map(self, ideal): 

""" 

Return the quotient of ``self`` by ``ideal``. 

 

INPUT: 

 

- ``ideal`` -- a ``FiniteDimensionalAlgebraIdeal`` 

 

OUTPUT: 

 

- :class:`~sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_morphism.FiniteDimensionalAlgebraMorphism`; 

the quotient homomorphism 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: q0 = A.quotient_map(A.zero_ideal()) 

sage: q0 

Morphism from Finite-dimensional algebra of degree 2 over Finite Field of size 3 to Finite-dimensional algebra of degree 2 over Finite Field of size 3 given by matrix 

[1 0] 

[0 1] 

sage: q1 = A.quotient_map(A.ideal(A.gen(1))) 

sage: q1 

Morphism from Finite-dimensional algebra of degree 2 over Finite Field of size 3 to Finite-dimensional algebra of degree 1 over Finite Field of size 3 given by matrix 

[1] 

[0] 

""" 

k = self.base_ring() 

f = ideal.basis_matrix().transpose().kernel().basis_matrix().echelon_form().transpose() 

pivots = f.pivot_rows() 

table = [] 

for p in pivots: 

v = matrix(k, 1, self.degree()) 

v[0,p] = 1 

v = self.element_class(self, v) 

table.append(f.solve_right(v.matrix() * f)) 

B = FiniteDimensionalAlgebra(k, table) 

return self.hom(f, codomain=B, check=False) 

 

def maximal_ideal(self): 

""" 

Compute the maximal ideal of the local algebra ``self``. 

 

.. NOTE:: 

 

``self`` must be unitary, commutative, associative and local 

(have a unique maximal ideal). 

 

OUTPUT: 

 

- :class:`~sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_ideal.FiniteDimensionalAlgebraIdeal`; 

the unique maximal ideal of ``self``. If ``self`` is not a local 

algebra, a ``ValueError`` is raised. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A.maximal_ideal() 

Ideal (0, e1) of Finite-dimensional algebra of degree 2 over Finite Field of size 3 

 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: B.maximal_ideal() 

Traceback (most recent call last): 

... 

ValueError: algebra is not local 

""" 

if self.degree() == 0: 

raise ValueError("the zero algebra is not local") 

if not(self.is_unitary() and self.is_commutative() 

and (self._assume_associative or self.is_associative())): 

raise TypeError("algebra must be unitary, commutative and associative") 

gens = [] 

for x in self.gens(): 

f = x.characteristic_polynomial().factor() 

if len(f) != 1: 

raise ValueError("algebra is not local") 

if f[0][1] > 1: 

gens.append(f[0][0](x)) 

return FiniteDimensionalAlgebraIdeal(self, gens) 

 

def primary_decomposition(self): 

""" 

Return the primary decomposition of ``self``. 

 

.. NOTE:: 

 

``self`` must be unitary, commutative and associative. 

 

OUTPUT: 

 

- a list consisting of the quotient maps ``self`` -> `A`, 

with `A` running through the primary factors of ``self`` 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A.primary_decomposition() 

[Morphism from Finite-dimensional algebra of degree 2 over Finite Field of size 3 to Finite-dimensional algebra of degree 2 over Finite Field of size 3 given by matrix [1 0] 

[0 1]] 

 

sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) 

sage: B.primary_decomposition() 

[Morphism from Finite-dimensional algebra of degree 3 over Rational Field to Finite-dimensional algebra of degree 1 over Rational Field given by matrix [0] 

[0] 

[1], Morphism from Finite-dimensional algebra of degree 3 over Rational Field to Finite-dimensional algebra of degree 2 over Rational Field given by matrix [1 0] 

[0 1] 

[0 0]] 

""" 

k = self.base_ring() 

n = self.degree() 

if n == 0: 

return [] 

if not (self.is_unitary() and self.is_commutative() 

and (self._assume_associative or self.is_associative())): 

raise TypeError("algebra must be unitary, commutative and associative") 

# Start with the trivial decomposition of self. 

components = [Matrix.identity(k, n)] 

for b in self.table(): 

# Use the action of the basis element b to refine our 

# decomposition of self. 

components_new = [] 

for c in components: 

# Compute the matrix of b on the component c, find its 

# characteristic polynomial, and factor it. 

b_c = c.solve_left(c * b) 

fact = b_c.characteristic_polynomial().factor() 

if len(fact) == 1: 

components_new.append(c) 

else: 

for f in fact: 

h, a = f 

e = h(b_c) ** a 

ker_e = e.kernel().basis_matrix() 

components_new.append(ker_e * c) 

components = components_new 

quotients = [] 

for i in range(len(components)): 

I = Matrix(k, 0, n) 

for j,c in enumerate(components): 

if j != i: 

I = I.stack(c) 

quotients.append(self.quotient_map(self.ideal(I, given_by_matrix=True))) 

return quotients 

 

def maximal_ideals(self): 

""" 

Return a list consisting of all maximal ideals of ``self``. 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) 

sage: A.maximal_ideals() 

[Ideal (e1) of Finite-dimensional algebra of degree 2 over Finite Field of size 3] 

 

sage: B = FiniteDimensionalAlgebra(QQ, []) 

sage: B.maximal_ideals() 

[] 

""" 

P = self.primary_decomposition() 

return [f.inverse_image(f.codomain().maximal_ideal()) for f in P]