Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

""" 

Free algebra quotient elements 

 

AUTHORS: 

- William Stein (2011-11-19): improved doctest coverage to 100% 

- David Kohel (2005-09): initial version 

 

""" 

 

#***************************************************************************** 

# Copyright (C) 2005 David Kohel <kohel@maths.usyd.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty 

# of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 

# 

# See the GNU General Public License for more details; the full text 

# is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from six import integer_types 

 

from sage.misc.misc import repr_lincomb 

from sage.structure.element import RingElement, AlgebraElement 

from sage.structure.parent_gens import localvars 

from sage.structure.richcmp import richcmp 

from sage.rings.integer import Integer 

from sage.modules.free_module_element import FreeModuleElement 

from sage.monoids.free_monoid_element import FreeMonoidElement 

from sage.algebras.free_algebra_element import FreeAlgebraElement 

 

 

import six 

 

 

def is_FreeAlgebraQuotientElement(x): 

""" 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) 

sage: sage.algebras.free_algebra_quotient_element.is_FreeAlgebraQuotientElement(i) 

True 

 

Of course this is testing the data type:: 

 

sage: sage.algebras.free_algebra_quotient_element.is_FreeAlgebraQuotientElement(1) 

False 

sage: sage.algebras.free_algebra_quotient_element.is_FreeAlgebraQuotientElement(H(1)) 

True 

""" 

return isinstance(x, FreeAlgebraQuotientElement) 

 

 

class FreeAlgebraQuotientElement(AlgebraElement): 

def __init__(self, A, x): 

""" 

Create the element x of the FreeAlgebraQuotient A. 

 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(ZZ) 

sage: sage.algebras.free_algebra_quotient.FreeAlgebraQuotientElement(H, i) 

i 

sage: a = sage.algebras.free_algebra_quotient.FreeAlgebraQuotientElement(H, 1); a 

1 

sage: a in H 

True 

 

TESTS:: 

 

sage: TestSuite(i).run() 

""" 

AlgebraElement.__init__(self, A) 

Q = self.parent() 

 

if isinstance(x, FreeAlgebraQuotientElement) and x.parent() == Q: 

self.__vector = Q.module()(x.vector()) 

return 

if isinstance(x, (Integer,) + integer_types): 

self.__vector = Q.module().gen(0) * x 

return 

elif isinstance(x, FreeModuleElement) and x.parent() is Q.module(): 

self.__vector = x 

return 

elif isinstance(x, FreeModuleElement) and x.parent() == A.module(): 

self.__vector = x 

return 

R = A.base_ring() 

M = A.module() 

F = A.monoid() 

B = A.monomial_basis() 

 

if isinstance(x, (Integer,) + integer_types): 

self.__vector = x*M.gen(0) 

elif isinstance(x, RingElement) and not isinstance(x, AlgebraElement) and x in R: 

self.__vector = x * M.gen(0) 

elif isinstance(x, FreeMonoidElement) and x.parent() is F: 

if x in B: 

self.__vector = M.gen(B.index(x)) 

else: 

raise AttributeError("Argument x (= %s) is not in monomial basis"%x) 

elif isinstance(x, list) and len(x) == A.dimension(): 

try: 

self.__vector = M(x) 

except TypeError: 

raise TypeError("Argument x (= %s) is of the wrong type."%x) 

elif isinstance(x, FreeAlgebraElement) and x.parent() is A.free_algebra(): 

# Need to do more work here to include monomials not 

# represented in the monomial basis. 

self.__vector = M(0) 

for m, c in six.iteritems(x._FreeAlgebraElement__monomial_coefficients): 

self.__vector += c*M.gen(B.index(m)) 

elif isinstance(x, dict): 

self.__vector = M(0) 

for m, c in six.iteritems(x): 

self.__vector += c*M.gen(B.index(m)) 

elif isinstance(x, AlgebraElement) and x.parent().ambient_algebra() is A: 

self.__vector = x.ambient_algebra_element().vector() 

else: 

raise TypeError("Argument x (= %s) is of the wrong type."%x) 

 

def _repr_(self): 

""" 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(ZZ) 

sage: i._repr_() 

'i' 

""" 

Q = self.parent() 

M = Q.monoid() 

with localvars(M, Q.variable_names()): 

cffs = list(self.__vector) 

mons = Q.monomial_basis() 

return repr_lincomb(zip(mons, cffs), strip_one=True) 

 

def _latex_(self): 

""" 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) 

sage: ((2/3)*i - j)._latex_() 

'\\frac{2}{3}i - j' 

""" 

Q = self.parent() 

M = Q.monoid() 

with localvars(M, Q.variable_names()): 

cffs = tuple(self.__vector) 

mons = Q.monomial_basis() 

return repr_lincomb(zip(mons, cffs), is_latex=True, strip_one=True) 

 

def vector(self): 

""" 

Return underlying vector representation of this element. 

 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) 

sage: ((2/3)*i - j).vector() 

(0, 2/3, -1, 0) 

""" 

return self.__vector 

 

def _richcmp_(self, right, op): 

""" 

Compare two quotient algebra elements; done by comparing the 

underlying vector representatives. 

 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) 

sage: i > j 

True 

sage: i == i 

True 

sage: i == 1 

False 

sage: i + j == j + i 

True 

""" 

return richcmp(self.vector(), right.vector(), op) 

 

def __neg__(self): 

""" 

Return negative of self. 

 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) 

sage: -i 

-i 

sage: -(2/3*i - 3/7*j + k) 

-2/3*i + 3/7*j - k 

""" 

y = self.parent()(0) 

y.__vector = -self.__vector 

return y 

 

def _add_(self, y): 

""" 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) 

sage: 2/3*i + 4*j + k 

2/3*i + 4*j + k 

""" 

A = self.parent() 

z = A(0) 

z.__vector = self.__vector + y.__vector 

return z 

 

def _sub_(self, y): 

""" 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) 

sage: 2/3*i - 4*j 

2/3*i - 4*j 

sage: a = 2/3*i - 4*j; a 

2/3*i - 4*j 

sage: a - a 

0 

""" 

A = self.parent() 

z = A(0) 

z.__vector = self.__vector - y.__vector 

return z 

 

def _mul_(self, y): 

""" 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) 

sage: a = (5 + 2*i - 3/5*j + 17*k); a*(a+10) 

-5459/25 + 40*i - 12*j + 340*k 

 

Double check that the above is actually right:: 

 

sage: R.<i,j,k> = QuaternionAlgebra(QQ,-1,-1) 

sage: a = (5 + 2*i - 3/5*j + 17*k); a*(a+10) 

-5459/25 + 40*i - 12*j + 340*k 

""" 

A = self.parent() 

def monomial_product(X,w,m): 

mats = X._FreeAlgebraQuotient__matrix_action 

for (j,k) in m._element_list: 

M = mats[int(j)] 

for l in range(k): w *= M 

return w 

u = self.__vector.__copy__() 

v = y.__vector 

z = A(0) 

B = A.monomial_basis() 

for i in range(A.dimension()): 

c = v[i] 

if c != 0: z.__vector += monomial_product(A,c*u,B[i]) 

return z 

 

def _rmul_(self, c): 

""" 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) 

sage: 3 * (-1+i-2*j+k) 

-3 + 3*i - 6*j + 3*k 

sage: (-1+i-2*j+k)._rmul_(3) 

-3 + 3*i - 6*j + 3*k 

""" 

return self.parent([c*a for a in self.__vector]) 

 

def _lmul_(self, c): 

""" 

EXAMPLES:: 

 

sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ) 

sage: (-1+i-2*j+k) * 3 

-3 + 3*i - 6*j + 3*k 

sage: (-1+i-2*j+k)._lmul_(3) 

-3 + 3*i - 6*j + 3*k 

""" 

return self.parent([a*c for a in self.__vector])