Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

""" 

Heisenberg Algebras 

 

AUTHORS: 

 

- Travis Scrimshaw (2013-08-13): Initial version 

""" 

 

#***************************************************************************** 

# Copyright (C) 2013-2017 Travis Scrimshaw <tcscrims at gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.misc.cachefunc import cached_method 

from sage.structure.indexed_generators import IndexedGenerators 

 

from sage.algebras.lie_algebras.lie_algebra import (LieAlgebraFromAssociative, 

LieAlgebraWithGenerators) 

from sage.algebras.lie_algebras.lie_algebra_element import (LieAlgebraElement, 

LieAlgebraMatrixWrapper) 

from sage.categories.lie_algebras import LieAlgebras 

from sage.categories.cartesian_product import cartesian_product 

from sage.matrix.matrix_space import MatrixSpace 

from sage.rings.integer import Integer 

from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets 

from sage.sets.family import Family 

from sage.sets.positive_integers import PositiveIntegers 

from sage.sets.set import Set 

 

class HeisenbergAlgebra_abstract(IndexedGenerators): 

""" 

The common methods for the (non-matrix) Heisenberg algebras. 

""" 

def __init__(self, I): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, oo) # indirect doctest 

""" 

IndexedGenerators.__init__(self, I, prefix='', bracket=False, 

latex_bracket=False, string_quotes=False) 

 

def p(self, i): 

""" 

The generator `p_i` of the Heisenberg algebra. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, oo) 

sage: L.p(2) 

p2 

""" 

return self.element_class(self, {'p%i'%i: self.base_ring().one()}) 

 

def q(self, i): 

""" 

The generator `q_i` of the Heisenberg algebra. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, oo) 

sage: L.q(2) 

q2 

""" 

return self.element_class(self, {'q%i'%i: self.base_ring().one()}) 

 

def z(self): 

""" 

Return the basis element `z` of the Heisenberg algebra. 

 

The element `z` spans the center of the Heisenberg algebra. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, oo) 

sage: L.z() 

z 

""" 

return self.element_class(self, {'z': self.base_ring().one()}) 

 

def bracket_on_basis(self, x, y): 

""" 

Return the bracket of basis elements indexed by ``x`` and ``y`` 

where ``x < y``. 

 

The basis of a Heisenberg algebra is ordered in such a way that 

the `p_i` come first, the `q_i` come next, and the `z` comes last. 

 

EXAMPLES:: 

 

sage: H = lie_algebras.Heisenberg(QQ, 3) 

sage: p1 = ('p', 1) 

sage: q1 = ('q', 1) 

sage: H.bracket_on_basis(p1, q1) 

z 

""" 

if y == 'z': # No need to test for x == 'z' since x < y is assumed. 

return self.zero() 

if x[0] == 'p' and y[0] == 'q' and x[1] == y[1]: 

return self.z() 

return self.zero() 

 

def _repr_term(self, m): 

r""" 

Return a string representation of the term indexed by ``m``. 

 

EXAMPLES:: 

 

sage: H = lie_algebras.Heisenberg(QQ, 3) 

sage: H._repr_term('p1') 

'p1' 

sage: H._repr_term('z') 

'z' 

""" 

return m 

 

def _latex_term(self, m): 

r""" 

Return a string representation of the term indexed by ``m``. 

 

EXAMPLES:: 

 

sage: H = lie_algebras.Heisenberg(QQ, 10) 

sage: H._latex_term('p1') 

'p_{1}' 

sage: H._latex_term('z') 

'z' 

sage: latex(H.p(10)) 

p_{10} 

""" 

if len(m) == 1: 

return m 

return "%s_{%s}"%(m[0], m[1:]) # else it is of length at least 2 

 

class Element(LieAlgebraElement): 

pass 

 

class HeisenbergAlgebra_fd(object): 

""" 

Common methods for finite-dimensional Heisenberg algebras. 

""" 

def __init__(self, n): 

""" 

Initialize ``self``. 

 

INPUT: 

 

- ``n`` -- the rank 

 

TESTS:: 

 

sage: H = lie_algebras.Heisenberg(QQ, 3) # indirect doctest 

""" 

self._n = n 

 

def n(self): 

""" 

Return the rank of the Heisenberg algebra ``self``. 

 

This is the ``n`` such that ``self`` is the `n`-th Heisenberg 

algebra. The dimension of this Heisenberg algebra is then 

`2n + 1`. 

 

EXAMPLES:: 

 

sage: H = lie_algebras.Heisenberg(QQ, 3) 

sage: H.n() 

3 

sage: H = lie_algebras.Heisenberg(QQ, 3, representation="matrix") 

sage: H.n() 

3 

""" 

return self._n 

 

@cached_method 

def gens(self): 

""" 

Return the Lie algebra generators of ``self``. 

 

EXAMPLES:: 

 

sage: H = lie_algebras.Heisenberg(QQ, 2) 

sage: H.gens() 

(p1, p2, q1, q2) 

sage: H = lie_algebras.Heisenberg(QQ, 0) 

sage: H.gens() 

(z,) 

""" 

return tuple(self.lie_algebra_generators()) 

 

def gen(self, i): 

""" 

Return the ``i``-th generator of ``self``. 

 

EXAMPLES:: 

 

sage: H = lie_algebras.Heisenberg(QQ, 2) 

sage: H.gen(0) 

p1 

sage: H.gen(3) 

q2 

""" 

return self.gens()[i] 

 

@cached_method 

def lie_algebra_generators(self): 

""" 

Return the Lie algebra generators of ``self``. 

 

EXAMPLES:: 

 

sage: H = lie_algebras.Heisenberg(QQ, 1) 

sage: H.lie_algebra_generators() 

Finite family {'q1': q1, 'p1': p1} 

sage: H = lie_algebras.Heisenberg(QQ, 0) 

sage: H.lie_algebra_generators() 

Finite family {'z': z} 

""" 

if self._n == 0: 

return Family(['z'], lambda i: self.z()) 

k = ['p%s'%i for i in range(1, self._n+1)] 

k += ['q%s'%i for i in range(1, self._n+1)] 

d = {} 

for i in range(1, self._n+1): 

d['p%s'%i] = self.p(i) 

d['q%s'%i] = self.q(i) 

return Family(k, lambda i: d[i]) 

 

@cached_method 

def basis(self): 

""" 

Return the basis of ``self``. 

 

EXAMPLES:: 

 

sage: H = lie_algebras.Heisenberg(QQ, 1) 

sage: H.basis() 

Finite family {'q1': q1, 'p1': p1, 'z': z} 

""" 

d = {} 

for i in range(1, self._n+1): 

d['p%s'%i] = self.p(i) 

d['q%s'%i] = self.q(i) 

d['z'] = self.z() 

return Family(self._indices, lambda i: d[i]) 

 

def _coerce_map_from_(self, H): 

""" 

Return the coercion map from ``H`` to ``self`` if one exists, 

otherwise return ``None``. 

 

EXAMPLES:: 

 

sage: HB = lie_algebras.Heisenberg(QQ, 3) 

sage: HM = lie_algebras.Heisenberg(QQ, 3, representation="matrix") 

sage: HB.has_coerce_map_from(HM) 

True 

sage: HM.has_coerce_map_from(HB) 

True 

sage: HB(HM.p(2)) 

p2 

sage: HM(-HB.q(3)) == -HM.q(3) 

True 

sage: HB(HM.z()) 

z 

sage: HM(HB.z()) == HM.z() 

True 

sage: HQ = lie_algebras.Heisenberg(QQ, 2) 

sage: HB.has_coerce_map_from(HQ) 

True 

sage: HB(HQ.p(2)) 

p2 

sage: HZ = lie_algebras.Heisenberg(ZZ, 2) 

sage: HB.has_coerce_map_from(HZ) 

True 

sage: HB(HZ.p(2)) 

p2 

sage: HZ = lie_algebras.Heisenberg(ZZ, 2, representation="matrix") 

sage: HB.has_coerce_map_from(HZ) 

True 

sage: HB(HZ.p(2)) 

p2 

""" 

if isinstance(H, HeisenbergAlgebra_fd): 

if H._n <= self._n and self.base_ring().has_coerce_map_from(H.base_ring()): 

return H.module_morphism(lambda i: self.basis()[i], codomain=self) 

return None # Otherwise no coercion 

return super(HeisenbergAlgebra_fd, self)._coerce_map_from_(H) 

 

class HeisenbergAlgebra(HeisenbergAlgebra_fd, HeisenbergAlgebra_abstract, 

LieAlgebraWithGenerators): 

""" 

A Heisenberg algebra defined using structure coefficients. 

 

The `n`-th Heisenberg algebra (where `n` is a nonnegative 

integer or infinity) is the Lie algebra with basis 

`\{p_i\}_{1 \leq i \leq n} \cup \{q_i\}_{1 \leq i \leq n} \cup \{z\}` 

with the following relations: 

 

.. MATH:: 

 

[p_i, q_j] = \delta_{ij} z, \quad [p_i, z] = [q_i, z] = [p_i, p_j] 

= [q_i, q_j] = 0. 

 

This Lie algebra is also known as the Heisenberg algebra of rank `n`. 

 

.. NOTE:: 

 

The relations `[p_i, q_j] = \delta_{ij} z`, `[p_i, z] = 0`, and 

`[q_i, z] = 0` are known as canonical commutation relations. See 

:wikipedia:`Canonical_commutation_relations`. 

 

.. WARNING:: 

 

The `n` in the above definition is called the "rank" of the 

Heisenberg algebra; it is not, however, a rank in any of the usual 

meanings that this word has in the theory of Lie algebras. 

 

INPUT: 

 

- ``R`` -- the base ring 

- ``n`` -- the rank of the Heisenberg algebra 

 

REFERENCES: 

 

- :wikipedia:`Heisenberg_algebra` 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, 2) 

""" 

def __init__(self, R, n): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, 2) 

sage: TestSuite(L).run() 

sage: L = lie_algebras.Heisenberg(QQ, 0) # not tested -- :trac:`18224` 

sage: TestSuite(L).run() 

""" 

HeisenbergAlgebra_fd.__init__(self, n) 

names = tuple(['p%s'%i for i in range(1,n+1)] 

+ ['q%s'%i for i in range(1,n+1)] 

+ ['z']) 

LieAlgebraWithGenerators.__init__(self, R, names=names, index_set=names, 

category=LieAlgebras(R).FiniteDimensional().WithBasis()) 

HeisenbergAlgebra_abstract.__init__(self, names) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: lie_algebras.Heisenberg(QQ, 3) 

Heisenberg algebra of rank 3 over Rational Field 

""" 

return "Heisenberg algebra of rank {0} over {1}".format(self._n, self.base_ring()) 

 

class InfiniteHeisenbergAlgebra(HeisenbergAlgebra_abstract, LieAlgebraWithGenerators): 

r""" 

The infinite Heisenberg algebra. 

 

This is the Heisenberg algebra on an infinite number of generators. In 

other words, this is the Heisenberg algebra of rank `\infty`. See 

:class:`HeisenbergAlgebra` for more information. 

""" 

def __init__(self, R): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, oo) 

sage: TestSuite(L).run() 

sage: L.p(1).bracket(L.q(1)) == L.z() 

True 

sage: L.q(1).bracket(L.p(1)) == -L.z() 

True 

""" 

S = cartesian_product([PositiveIntegers(), ['p','q']]) 

cat = LieAlgebras(R).WithBasis() 

LieAlgebraWithGenerators.__init__(self, R, index_set=S, category=cat) 

HeisenbergAlgebra_abstract.__init__(self, S) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: lie_algebras.Heisenberg(QQ, oo) 

Infinite Heisenberg algebra over Rational Field 

""" 

return "Infinite Heisenberg algebra over {}".format(self.base_ring()) 

 

def _an_element_(self): 

""" 

Return an element of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, oo) 

sage: L._an_element_() 

p2 + q2 - 1/2*q3 + z 

""" 

c = self.base_ring().an_element() 

return self.p(2) + self.q(2) - c * self.q(3) + self.z() 

 

def lie_algebra_generators(self): 

""" 

Return the generators of ``self`` as a Lie algebra. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, oo) 

sage: L.lie_algebra_generators() 

Lazy family (generator map(i))_{i in The Cartesian product of 

(Positive integers, {'p', 'q'})} 

 

""" 

return Family(self._indices, lambda x: self.monomial(x[1] + str(x[0])), 

name='generator map') 

 

def basis(self): 

""" 

Return the basis of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, oo) 

sage: L.basis() 

Lazy family (basis map(i))_{i in Disjoint union of Family ({'z'}, 

The Cartesian product of (Positive integers, {'p', 'q'}))} 

sage: L.basis()['z'] 

z 

sage: L.basis()[(12, 'p')] 

p12 

""" 

S = cartesian_product([PositiveIntegers(), ['p','q']]) 

I = DisjointUnionEnumeratedSets([Set(['z']), S]) 

def basis_elt(x): 

if isinstance(x, str): 

return self.monomial(x) 

return self.monomial(x[1] + str(x[0])) 

return Family(I, basis_elt, name="basis map") 

 

def _from_fd_on_basis(self, i): 

""" 

Return the monomial in ``self`` corresponding to the 

basis element indexed by ``i``, where ``i`` is a basis index for 

a *finite-dimensional* Heisenberg algebra. 

 

This is used for coercion. 

 

EXAMPLES:: 

 

sage: H = lie_algebras.Heisenberg(QQ, oo) 

sage: H._from_fd_on_basis('p2') 

p2 

sage: H._from_fd_on_basis('q3') 

q3 

sage: H._from_fd_on_basis('z') 

z 

""" 

if i == 'z': 

return self.z() 

if i[0] == 'p': 

return self.p(Integer(i[1:])) 

return self.q(Integer(i[1:])) 

 

def _coerce_map_from_(self, H): 

""" 

Return the coercion map from ``H`` to ``self`` if one exists, 

otherwise return ``None``. 

 

EXAMPLES:: 

 

sage: H = lie_algebras.Heisenberg(QQ, oo) 

sage: HZ = lie_algebras.Heisenberg(ZZ, oo) 

sage: phi = H.coerce_map_from(HZ) 

sage: phi(HZ.p(3)) == H.p(3) 

True 

sage: phi(HZ.p(3)).leading_coefficient().parent() 

Rational Field 

sage: HF = lie_algebras.Heisenberg(QQ, 3, representation="matrix") 

sage: H.has_coerce_map_from(HF) 

True 

sage: H(HF.p(2)) 

p2 

sage: H(HF.z()) 

z 

sage: HF = lie_algebras.Heisenberg(QQ, 3) 

sage: H.has_coerce_map_from(HF) 

True 

sage: H(HF.p(2)) 

p2 

sage: H(HF.z()) 

z 

""" 

if isinstance(H, HeisenbergAlgebra_fd): 

if self.base_ring().has_coerce_map_from(H.base_ring()): 

return H.module_morphism(self._from_fd_on_basis, codomain=self) 

return None # Otherwise no coercion 

if isinstance(H, InfiniteHeisenbergAlgebra): 

if self.base_ring().has_coerce_map_from(H.base_ring()): 

return lambda C,x: self._from_dict(x._monomial_coefficients, coerce=True) 

return None # Otherwise no coercion 

return super(InfiniteHeisenbergAlgebra, self)._coerce_map_from_(H) 

 

####################################################### 

## Finite rank Heisenberg algebra using matrices 

 

class HeisenbergAlgebra_matrix(HeisenbergAlgebra_fd, LieAlgebraFromAssociative): 

r""" 

A Heisenberg algebra represented using matrices. 

 

The `n`-th Heisenberg algebra over `R` is a Lie algebra which is 

defined as the Lie algebra of the `(n+2) \times (n+2)`-matrices: 

 

.. MATH:: 

 

\begin{bmatrix} 

0 & p^T & k \\ 

0 & 0_n & q \\ 

0 & 0 & 0 

\end{bmatrix} 

 

where `p, q \in R^n` and `0_n` in the `n \times n` zero matrix. It has 

a basis consisting of 

 

.. MATH:: 

 

\begin{aligned} 

p_i & = \begin{bmatrix} 

0 & e_i^T & 0 \\ 

0 & 0_n & 0 \\ 

0 & 0 & 0 

\end{bmatrix} \qquad \text{for } 1 \leq i \leq n , 

\\ q_i & = \begin{bmatrix} 

0 & 0 & 0 \\ 

0 & 0_n & e_i \\ 

0 & 0 & 0 

\end{bmatrix} \qquad \text{for } 1 \leq i \leq n , 

\\ z & = \begin{bmatrix} 

0 & 0 & 1 \\ 

0 & 0_n & 0 \\ 

0 & 0 & 0 

\end{bmatrix}, 

\end{aligned} 

 

where `\{e_i\}` is the standard basis of `R^n`. In other words, it has 

the basis `(p_1, p_2, \ldots, p_n, q_1, q_2, \ldots, q_n, z)`, where 

`p_i = E_{1, i+1}`, `q_i = E_{i+1, n+2}` and `z = E_{1, n+2}` are 

elementary matrices. 

 

This Lie algebra is isomorphic to the `n`-th Heisenberg algebra 

constructed in :class:`HeisenbergAlgebra`; the bases correspond to 

each other. 

 

INPUT: 

 

- ``R`` -- the base ring 

- ``n`` -- the nonnegative integer `n` 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, 1, representation="matrix") 

sage: p = L.p(1) 

sage: q = L.q(1) 

sage: z = L.bracket(p, q); z 

[0 0 1] 

[0 0 0] 

[0 0 0] 

sage: z == L.z() 

True 

sage: L.dimension() 

3 

 

sage: L = lie_algebras.Heisenberg(QQ, 2, representation="matrix") 

sage: sorted(dict(L.basis()).items()) 

[( 

[0 1 0 0] 

[0 0 0 0] 

[0 0 0 0] 

'p1', [0 0 0 0] 

), 

( 

[0 0 1 0] 

[0 0 0 0] 

[0 0 0 0] 

'p2', [0 0 0 0] 

), 

( 

[0 0 0 0] 

[0 0 0 1] 

[0 0 0 0] 

'q1', [0 0 0 0] 

), 

( 

[0 0 0 0] 

[0 0 0 0] 

[0 0 0 1] 

'q2', [0 0 0 0] 

), 

( 

[0 0 0 1] 

[0 0 0 0] 

[0 0 0 0] 

'z', [0 0 0 0] 

)] 

 

sage: L = lie_algebras.Heisenberg(QQ, 0, representation="matrix") 

sage: sorted(dict(L.basis()).items()) 

[( 

[0 1] 

'z', [0 0] 

)] 

sage: L.gens() 

( 

[0 1] 

[0 0] 

) 

sage: L.lie_algebra_generators() 

Finite family {'z': [0 1] 

[0 0]} 

""" 

def __init__(self, R, n): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, 2, representation="matrix") 

sage: TestSuite(L).run() 

""" 

HeisenbergAlgebra_fd.__init__(self, n) 

MS = MatrixSpace(R, n+2, sparse=True) 

one = R.one() 

p = tuple(MS({(0,i): one}) for i in range(1, n+1)) 

q = tuple(MS({(i,n+1): one}) for i in range(1, n+1)) 

z = (MS({(0,n+1): one}),) 

names = tuple('p%s'%i for i in range(1,n+1)) 

names = names + tuple('q%s'%i for i in range(1,n+1)) + ('z',) 

cat = LieAlgebras(R).FiniteDimensional().WithBasis() 

LieAlgebraFromAssociative.__init__(self, MS, p + q + z, names=names, 

index_set=names, category=cat) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: lie_algebras.Heisenberg(QQ, 3, representation="matrix") 

Heisenberg algebra of rank 3 over Rational Field 

""" 

return "Heisenberg algebra of rank {} over {}".format(self._n, self.base_ring()) 

 

def p(self, i): 

r""" 

Return the generator `p_i` of the Heisenberg algebra. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, 1, representation="matrix") 

sage: L.p(1) 

[0 1 0] 

[0 0 0] 

[0 0 0] 

""" 

return self._gens['p%s'%i] 

 

def q(self, i): 

r""" 

Return the generator `q_i` of the Heisenberg algebra. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, 1, representation="matrix") 

sage: L.q(1) 

[0 0 0] 

[0 0 1] 

[0 0 0] 

""" 

return self._gens['q%s'%i] 

 

def z(self): 

""" 

Return the basis element `z` of the Heisenberg algebra. 

 

The element `z` spans the center of the Heisenberg algebra. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, 1, representation="matrix") 

sage: L.z() 

[0 0 1] 

[0 0 0] 

[0 0 0] 

""" 

return self._gens['z'] 

 

class Element(LieAlgebraMatrixWrapper, LieAlgebraFromAssociative.Element): 

def monomial_coefficients(self, copy=True): 

""" 

Return a dictionary whose keys are indices of basis elements in 

the support of ``self`` and whose values are the corresponding 

coefficients. 

 

INPUT: 

 

- ``copy`` -- ignored 

 

EXAMPLES:: 

 

sage: L = lie_algebras.Heisenberg(QQ, 3, representation="matrix") 

sage: elt = L(Matrix(QQ, [[0, 1, 3, 0, 3], [0, 0, 0, 0, 0], [0, 0, 0, 0, -3], 

....: [0, 0, 0, 0, 7], [0, 0, 0, 0, 0]])) 

sage: elt 

[ 0 1 3 0 3] 

[ 0 0 0 0 0] 

[ 0 0 0 0 -3] 

[ 0 0 0 0 7] 

[ 0 0 0 0 0] 

sage: sorted(elt.monomial_coefficients().items()) 

[('p1', 1), ('p2', 3), ('q2', -3), ('q3', 7), ('z', 3)] 

""" 

d = {} 

n = self.parent()._n 

for i, mon in enumerate(self.parent().basis().keys()): 

if i < n: 

entry = self[0, i+1] 

elif i < 2 * n: 

entry = self[i-n+1, n+1] 

else: 

entry = self[0, n+1] 

if entry: 

d[mon] = entry 

return d