Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

# -*- coding: utf-8 -*- 

""" 

Lie Algebra Elements 

  

AUTHORS: 

  

- Travis Scrimshaw (2013-05-04): Initial implementation 

""" 

  

#***************************************************************************** 

# Copyright (C) 2013-2017 Travis Scrimshaw <tcscrims at gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

  

from copy import copy 

from cpython.object cimport Py_EQ, Py_NE 

  

from sage.misc.misc import repr_lincomb 

from sage.combinat.free_module import CombinatorialFreeModule 

from sage.structure.element cimport have_same_parent, coercion_model, parent 

from sage.cpython.wrapperdescr cimport wrapperdescr_fastcall 

from sage.structure.element_wrapper cimport ElementWrapper 

from sage.structure.richcmp cimport richcmp 

from sage.data_structures.blas_dict cimport axpy, add, negate, scal 

  

# TODO: Do we want a dense version? 

cdef class LieAlgebraElement(IndexedFreeModuleElement): 

""" 

A Lie algebra element. 

""" 

# Need to bypass the coercion model 

def __mul__(left, right): 

""" 

If we are multiplying two non-zero elements, automatically 

lift up to the universal enveloping algebra. 

  

EXAMPLES:: 

  

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'): {'z':1}}) 

sage: y*x 

x*y - z 

  

Check that actions work:: 

  

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: d = L.basis() 

sage: M = L.chargeless_representation(1/2, 3/4) 

sage: d[-5] * M.basis()[10] 

-47/4*v[5] 

  

TESTS:: 

  

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'): {'z':1}}) 

sage: int(3) * x 

3*x 

sage: x * int(3) 

3*x 

sage: y * x.lift() 

x*y - z 

sage: y.lift() * x 

x*y - z 

""" 

try: 

# Try the normal coercion first 

return wrapperdescr_fastcall(IndexedFreeModuleElement.__mul__, 

left, (right,), <object>NULL) 

except TypeError: 

pass 

  

# Lift up to the UEA and try multiplication there 

# We will eventually want to lift stuff up anyways, 

# so just do it here. 

if isinstance(left, LieAlgebraElement): 

left = (<LieAlgebraElement> left).lift() 

if isinstance(right, LieAlgebraElement): 

right = (<LieAlgebraElement> right).lift() 

return left * right 

  

cpdef lift(self): 

""" 

Lift ``self`` to the universal enveloping algebra. 

  

EXAMPLES:: 

  

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'):{'z':1}}) 

sage: x.lift().parent() == L.universal_enveloping_algebra() 

True 

  

TESTS:: 

  

sage: L = lie_algebras.pwitt(GF(5), 5); L 

The 5-Witt Lie algebra over Finite Field of size 5 

sage: x = L.basis()[2] 

sage: y = L.basis()[3] 

sage: x.lift() 

b2 

sage: y.lift() 

b3 

sage: x * y 

b2*b3 

sage: y * x 

b2*b3 + b0 

  

sage: L = lie_algebras.regular_vector_fields(QQ) 

sage: L.an_element() 

d[-1] + d[0] - 3*d[1] 

sage: L.an_element().lift() 

PBW[-1] + PBW[0] - 3*PBW[1] 

""" 

UEA = self._parent.universal_enveloping_algebra() 

try: 

gen_dict = UEA.algebra_generators() 

except (TypeError, AttributeError): 

gen_dict = UEA.gens_dict() 

s = UEA.zero() 

if not self: 

return s 

# Special hook for when the index set of the parent of ``self`` 

# does not match the generators index set of the UEA. 

if hasattr(self._parent, '_UEA_names_map'): 

names_map = self._parent._UEA_names_map 

for t, c in self._monomial_coefficients.iteritems(): 

s += c * gen_dict[names_map[t]] 

else: 

for t, c in self._monomial_coefficients.iteritems(): 

s += c * gen_dict[t] 

return s 

  

cdef class LieAlgebraElementWrapper(ElementWrapper): 

""" 

Wrap an element as a Lie algebra element. 

  

TESTS: 

  

We check comparisons:: 

  

sage: L = lie_algebras.sl(QQ, 2, representation='matrix') 

sage: L.bracket(L.gen(0), L.gen(1)) == -L.bracket(L.gen(1), L.gen(0)) 

True 

  

The next doctests show similar behavior, although on elements of 

other classes:: 

  

sage: L = lie_algebras.three_dimensional_by_rank(QQ, 3) 

sage: L.bracket(L.gen(0), L.gen(1)) == -L.bracket(L.gen(1), L.gen(0)) 

True 

  

sage: L = lie_algebras.three_dimensional_by_rank(QQ, 1) 

sage: L.bracket(L.gen(0), L.gen(1)) == -L.bracket(L.gen(1), L.gen(0)) 

True 

  

Check inequality:: 

  

sage: L = lie_algebras.sl(QQ, 2, representation='matrix') 

sage: L.bracket(L.gen(0), L.gen(1)) != -L.bracket(L.gen(1), L.gen(0)) 

False 

sage: L.zero() == 0 

True 

sage: L.zero() != 0 

False 

  

The next doctests show similar behavior, although on elements of 

other classes:: 

  

sage: L = lie_algebras.three_dimensional_by_rank(QQ, 3) 

sage: L.bracket(L.gen(0), L.gen(1)) != -L.bracket(L.gen(1), L.gen(0)) 

False 

sage: L.an_element() 

X + Y + Z 

sage: L.an_element() == 0 

False 

sage: L.an_element() != 0 

True 

  

sage: L = lie_algebras.three_dimensional_by_rank(QQ, 1) 

sage: L.bracket(L.gen(0), L.gen(1)) != -L.bracket(L.gen(1), L.gen(0)) 

False 

sage: L.zero() == 0 

True 

sage: L.zero() != 0 

False 

sage: L.zero() >= 0 

True 

sage: L.zero() < 0 

False 

""" 

  

def _repr_(self): 

""" 

Return a string representation of ``self``. 

  

EXAMPLES:: 

  

sage: R = FreeAlgebra(QQ, 3, 'x,y,z') 

sage: L.<x,y,z> = LieAlgebra(associative=R.gens()) 

sage: x + y 

x + y 

""" 

return repr(self.value) 

  

def _latex_(self): 

r""" 

Return a `\LaTeX` representation of ``self``. 

  

EXAMPLES:: 

  

sage: R = FreeAlgebra(QQ, 3, 'x') 

sage: L.<x0,x1,x2> = LieAlgebra(associative=R.gens()) 

sage: latex(x0 + x1) 

x_{0} + x_{1} 

""" 

from sage.misc.latex import latex 

return latex(self.value) 

  

def _ascii_art_(self): 

""" 

Return an ascii art representation of ``self``. 

  

EXAMPLES:: 

  

sage: s = SymmetricFunctions(QQ).s() 

sage: L = LieAlgebra(associative=s) 

sage: P = Partition([4,2,2,1]) 

sage: x = L.basis()[P] 

sage: ascii_art(x) 

s 

**** 

** 

** 

* 

""" 

from sage.typeset.ascii_art import ascii_art 

return ascii_art(self.value) 

  

def _unicode_art_(self): 

""" 

Return a unicode art representation of ``self``. 

  

EXAMPLES:: 

  

sage: s = SymmetricFunctions(QQ).s() 

sage: L = LieAlgebra(associative=s) 

sage: P = Partition([4,2,2,1]) 

sage: x = L.basis()[P] 

sage: unicode_art(x) 

s 

┌┬┬┬┐ 

├┼┼┴┘ 

├┼┤ 

├┼┘ 

└┘ 

""" 

from sage.typeset.unicode_art import unicode_art 

return unicode_art(self.value) 

  

def __nonzero__(self): 

""" 

Return if ``self`` is non-zero. 

  

EXAMPLES:: 

  

sage: R = FreeAlgebra(QQ, 3, 'x,y,z') 

sage: L.<x,y,z> = LieAlgebra(associative=R.gens()) 

sage: bool(L.zero()) 

False 

sage: bool(x + y) 

True 

""" 

return bool(self.value) 

  

cpdef _add_(self, right): 

""" 

Add ``self`` and ``rhs``. 

  

EXAMPLES:: 

  

sage: R = FreeAlgebra(QQ, 3, 'x,y,z') 

sage: L.<x,y,z> = LieAlgebra(associative=R.gens()) 

sage: x + y 

x + y 

""" 

return type(self)(self._parent, self.value + right.value) 

  

cpdef _sub_(self, right): 

""" 

Subtract ``self`` and ``rhs``. 

  

EXAMPLES:: 

  

sage: R = FreeAlgebra(QQ, 3, 'x,y,z') 

sage: L.<x,y,z> = LieAlgebra(associative=R.gens()) 

sage: x - y 

x - y 

""" 

return type(self)(self._parent, self.value - right.value) 

  

# Need to bypass the coercion model 

def __mul__(left, right): 

""" 

If we are multiplying two non-zero elements, automatically 

lift up to the universal enveloping algebra. 

  

.. TODO:: 

  

Write more tests for this method. 

  

EXAMPLES:: 

  

sage: S = SymmetricGroup(3).algebra(QQ) 

sage: L = LieAlgebra(associative=S) 

sage: x = L.gen(2); x 

(1,2,3) 

sage: y = L.gen(1); y 

(1,2) 

sage: u = x*3; u 

3*(1,2,3) 

sage: parent(u) == L 

True 

sage: u = x*(3/2); u 

3/2*(1,2,3) 

sage: parent(u) == L 

True 

sage: elt = x*y - y*x; elt 

b4 - b5 

sage: xp, yp = x.lift_associative(), y.lift_associative() 

sage: eltp = xp*yp - yp*xp; eltp 

(2,3) - (1,3) 

sage: G = list(S.basis()) 

sage: G[4] - G[5] 

(2,3) - (1,3) 

  

TESTS:: 

  

sage: G = SymmetricGroup(3) 

sage: S = GroupAlgebra(G, QQ) 

sage: L.<x,y> = LieAlgebra(associative=S.gens()) 

sage: int(3) * x 

3*(1,2,3) 

sage: y * int(3) 

3*(1,2) 

""" 

try: 

# Try the normal coercion first 

return wrapperdescr_fastcall(ElementWrapper.__mul__, 

left, (right,), <object>NULL) 

except TypeError: 

pass 

  

# Lift up to the UEA and try multiplication there 

# We will eventually want to lift stuff up anyways, 

# so just do it here. 

if isinstance(left, LieAlgebraElementWrapper): 

left = (<LieAlgebraElementWrapper> left).lift() 

if isinstance(right, LieAlgebraElementWrapper): 

right = (<LieAlgebraElementWrapper> right).lift() 

return left * right 

  

def __div__(self, x): 

""" 

Division by coefficients. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Heisenberg(QQ, 3) 

sage: x = L.an_element(); x 

p1 

sage: x / 2 

1/2*p1 

""" 

return self * (~x) 

  

cpdef _acted_upon_(self, scalar, bint self_on_left): 

""" 

Return the action of a scalar on ``self``. 

  

EXAMPLES:: 

  

sage: R = FreeAlgebra(QQ, 3, 'x,y,z') 

sage: L.<x,y,z> = LieAlgebra(associative=R.gens()) 

sage: 3*x 

3*x 

sage: parent(3*x) == parent(x) 

True 

sage: x / 2 

1/2*x 

sage: y * (1/2) 

1/2*y 

sage: y * 1/2 

1/2*y 

sage: 1/2 * y 

1/2*y 

sage: QQ(1/2) * y 

1/2*y 

""" 

# This was copied and IDK if it still applies (TCS): 

# With the current design, the coercion model does not have 

# enough information to detect apriori that this method only 

# accepts scalars; so it tries on some elements(), and we need 

# to make sure to report an error. 

scalar_parent = parent(scalar) 

if scalar_parent != self._parent.base_ring(): 

# Temporary needed by coercion (see Polynomial/FractionField tests). 

if self._parent.base_ring().has_coerce_map_from(scalar_parent): 

scalar = self._parent.base_ring()( scalar ) 

else: 

return None 

if self_on_left: 

return type(self)(self._parent, self.value * scalar) 

return type(self)(self._parent, scalar * self.value) 

  

def __neg__(self): 

""" 

Return the negation of ``self``. 

  

EXAMPLES:: 

  

sage: R = FreeAlgebra(QQ, 3, 'x,y,z') 

sage: L.<x,y,z> = LieAlgebra(associative=R.gens()) 

sage: -x 

-x 

""" 

return type(self)(self._parent, -self.value) 

  

def __getitem__(self, i): 

""" 

Redirect the ``__getitem__()`` to the wrapped element. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.sl(QQ, 2, representation='matrix') 

sage: m = L.gen(0) 

sage: m[0,0] 

0 

sage: m[0][1] 

1 

""" 

return self.value.__getitem__(i) 

  

def __iter__(self): 

""" 

Iterate over ``self``. 

  

EXAMPLES:: 

  

sage: G = SymmetricGroup(3) 

sage: S = G.algebra(QQ) 

sage: L = LieAlgebra(associative=S) 

sage: x = L.an_element() + L.basis()[G.one()] 

sage: x 

2*() + (2,3) + (1,2) + (1,2,3) + (1,3,2) + (1,3) 

sage: list(x) 

[((2,3), 1), ((1,2), 1), ((1,3), 1), 

((1,2,3), 1), ((1,3,2), 1), ((), 2)] 

""" 

cdef dict d = self.value.monomial_coefficients(copy=False) 

yield from d.iteritems() 

  

  

# TODO: Also used for vectors, find a better name 

cdef class LieAlgebraMatrixWrapper(LieAlgebraElementWrapper): 

""" 

Lie algebra element wrapper around a matrix. 

""" 

def __init__(self, parent, value): 

""" 

Initialize ``self``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Heisenberg(QQ, 1, representation="matrix") 

sage: z = L.z() 

sage: z.value.is_immutable() 

True 

""" 

value.set_immutable() # Make the matrix immutable for hashing 

LieAlgebraElementWrapper.__init__(self, parent, value) 

  

cdef class StructureCoefficientsElement(LieAlgebraMatrixWrapper): 

""" 

An element of a Lie algebra given by structure coefficients. 

""" 

def _repr_(self): 

""" 

EXAMPLES:: 

  

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}}) 

sage: x - 3/2 * y 

x - 3/2*y 

""" 

return repr_lincomb(self._sorted_items_for_printing(), 

scalar_mult=self._parent._print_options['scalar_mult'], 

repr_monomial=self._parent._repr_generator, 

strip_one=True) 

  

def _latex_(self): 

r""" 

EXAMPLES:: 

  

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}}) 

sage: elt = x - 3/2 * y 

sage: latex(elt) 

x - \frac{3}{2}y 

""" 

return repr_lincomb(self._sorted_items_for_printing(), 

scalar_mult=self._parent._print_options['scalar_mult'], 

latex_scalar_mult=self._parent._print_options['latex_scalar_mult'], 

repr_monomial=self._parent._latex_term, 

is_latex=True, strip_one=True) 

  

cpdef bracket(self, right): 

""" 

Return the Lie bracket ``[self, right]``. 

  

EXAMPLES:: 

  

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'): {'z':1}, ('y','z'): {'x':1}, ('z','x'): {'y':1}}) 

sage: x.bracket(y) 

z 

sage: y.bracket(x) 

-z 

sage: (x + y - z).bracket(x - y + z) 

-2*y - 2*z 

""" 

if not have_same_parent(self, right): 

self, right = coercion_model.canonical_coercion(self, right) 

return self._bracket_(right) 

  

# We need this method because the LieAlgebra.bracket method (from the 

# category) calls this, where we are guaranteed to have the same parent. 

cpdef _bracket_(self, right): 

""" 

Return the Lie bracket ``[self, right]``. 

  

EXAMPLES:: 

  

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'): {'z':1}, ('y','z'): {'x':1}, ('z','x'): {'y':1}}) 

sage: x._bracket_(y) 

z 

sage: y._bracket_(x) 

-z 

""" 

P = self._parent 

cdef dict s_coeff = P._s_coeff 

d = P.dimension() 

cdef list ret = [P.base_ring().zero()]*d 

cdef int i1, i2, i3 

cdef StructureCoefficientsElement rt = <StructureCoefficientsElement> right 

for i1 in range(d): 

c1 = self.value[i1] 

if not c1: 

continue 

for i2 in range(d): 

c2 = rt.value[i2] 

if not c2: 

continue 

prod_c1_c2 = c1 * c2 

if (i1, i2) in s_coeff: 

v = s_coeff[i1, i2] 

for i3 in range(d): 

ret[i3] += prod_c1_c2 * v[i3] 

elif (i2, i1) in s_coeff: 

v = s_coeff[i2, i1] 

for i3 in range(d): 

ret[i3] -= prod_c1_c2 * v[i3] 

return type(self)(P, P._M(ret)) 

  

def __iter__(self): 

""" 

Iterate over ``self``. 

  

EXAMPLES:: 

  

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}}) 

sage: elt = x - 3/2 * y 

sage: list(elt) 

[('x', 1), ('y', -3/2)] 

""" 

zero = self._parent.base_ring().zero() 

I = self._parent._indices 

cdef int i 

for i,v in enumerate(self.value): 

if v != zero: 

yield (I[i], v) 

  

cpdef to_vector(self): 

""" 

Return ``self`` as a vector. 

  

EXAMPLES:: 

  

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'): {'z':1}}) 

sage: a = x + 3*y - z/2 

sage: a.to_vector() 

(1, 3, -1/2) 

""" 

return self.value 

  

def lift(self): 

""" 

Return the lift of ``self`` to the universal enveloping algebra. 

  

EXAMPLES:: 

  

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}}) 

sage: elt = x - 3/2 * y 

sage: l = elt.lift(); l 

x - 3/2*y 

sage: l.parent() 

Noncommutative Multivariate Polynomial Ring in x, y 

over Rational Field, nc-relations: {y*x: x*y - x} 

""" 

UEA = self._parent.universal_enveloping_algebra() 

gens = UEA.gens() 

return UEA.sum(c * gens[i] for i, c in self.value.iteritems()) 

  

cpdef dict monomial_coefficients(self, bint copy=True): 

""" 

Return the monomial coefficients of ``self`` as a dictionary. 

  

EXAMPLES:: 

  

sage: L.<x,y,z> = LieAlgebra(QQ, {('x','y'): {'z':1}}) 

sage: a = 2*x - 3/2*y + z 

sage: a.monomial_coefficients() 

{'x': 2, 'y': -3/2, 'z': 1} 

sage: a = 2*x - 3/2*z 

sage: a.monomial_coefficients() 

{'x': 2, 'z': -3/2} 

""" 

I = self._parent._indices 

return {I[i]: v for i,v in self.value.iteritems()} 

  

def __getitem__(self, i): 

""" 

Return the coefficient of the basis element indexed by ``i``. 

  

EXAMPLES:: 

  

sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'x':1}}) 

sage: elt = x - 3/2 * y 

sage: elt['y'] 

-3/2 

""" 

return self.value[self._parent._indices.index(i)] 

  

  

cdef class UntwistedAffineLieAlgebraElement(Element): 

""" 

An element of an untwisted affine Lie algebra. 

""" 

def __init__(self, parent, dict t_dict, c_coeff, d_coeff): 

""" 

Initialize ``self``. 

  

TESTS:: 

  

sage: L = lie_algebras.Affine(QQ, ['A',2,1]) 

sage: x = L.an_element() 

sage: TestSuite(x).run() 

""" 

Element.__init__(self, parent) 

self._t_dict = t_dict 

self._c_coeff = c_coeff 

self._d_coeff = d_coeff 

self._hash = -1 

  

def __reduce__(self): 

""" 

Used in pickling. 

  

TESTS:: 

  

sage: L = lie_algebras.Affine(QQ, ['B',3,1]) 

sage: x = L.an_element() 

sage: loads(dumps(x)) == x 

True 

""" 

return (_build_untwisted_affine_element, 

(self._parent, self._t_dict, self._c_coeff, self._d_coeff)) 

  

def _repr_(self): 

""" 

Return a string representation of ``self``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['A',1,1]) 

sage: list(L.lie_algebra_generators()) 

[(E[alpha[1]])#t^0, 

(E[-alpha[1]])#t^0, 

(h1)#t^0, 

(E[-alpha[1]])#t^1, 

(E[alpha[1]])#t^-1, 

c, 

d] 

sage: L.an_element() 

(E[alpha[1]] + h1 + E[-alpha[1]])#t^0 

+ (E[-alpha[1]])#t^1 + (E[alpha[1]])#t^-1 

+ c + d 

sage: L.zero() 

0 

  

sage: e1,f1,h1,e0,f0,c,d = list(L.lie_algebra_generators()) 

sage: e1 + 2*f1 - h1 + e0 + 3*c - 2*d 

(E[alpha[1]] - h1 + 2*E[-alpha[1]])#t^0 + (E[-alpha[1]])#t^1 

+ 3*c + -2*d 

""" 

ret = ' + '.join('({})#t^{}'.format(g, t) 

for t,g in self._t_dict.iteritems()) 

if self._c_coeff != 0: 

if ret: 

ret += ' + ' 

if self._c_coeff != 1: 

ret += repr(self._c_coeff) + '*c' 

else: 

ret += 'c' 

  

if self._d_coeff != 0: 

if ret: 

ret += ' + ' 

if self._d_coeff != 1: 

ret += repr(self._d_coeff) + '*d' 

else: 

ret += 'd' 

  

if not ret: 

return '0' 

return ret 

  

def _latex_(self): 

r""" 

Return a latex representation of ``self``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['A',1,1]) 

sage: [latex(g) for g in L.lie_algebra_generators()] 

[(E_{\alpha_{1}}) \otimes t^{0}, 

(E_{-\alpha_{1}}) \otimes t^{0}, 

(E_{\alpha^\vee_{1}}) \otimes t^{0}, 

(E_{-\alpha_{1}}) \otimes t^{1}, 

(E_{\alpha_{1}}) \otimes t^{-1}, 

c, 

d] 

sage: latex(L.an_element()) 

(E_{\alpha_{1}} + E_{\alpha^\vee_{1}} + E_{-\alpha_{1}}) \otimes t^{0} 

+ (E_{-\alpha_{1}}) \otimes t^{1} + (E_{\alpha_{1}}) \otimes t^{-1} 

+ c + d 

sage: latex(L.zero()) 

0 

  

sage: e1,f1,h1,e0,f0,c,d = list(L.lie_algebra_generators()) 

sage: latex(e1 + 2*f1 - h1 + e0 + 3*c - 2*d) 

(E_{\alpha_{1}} - E_{\alpha^\vee_{1}} + 2E_{-\alpha_{1}}) \otimes t^{0} 

+ (E_{-\alpha_{1}}) \otimes t^{1} + 3 c + -2 d 

""" 

from sage.misc.latex import latex 

ret = ' + '.join('({}) \otimes t^{{{}}}'.format(latex(g), t) 

for t,g in self._t_dict.iteritems()) 

if self._c_coeff != 0: 

if ret: 

ret += ' + ' 

if self._c_coeff != 1: 

ret += latex(self._c_coeff) + ' c' 

else: 

ret += 'c' 

  

if self._d_coeff != 0: 

if ret: 

ret += ' + ' 

if self._d_coeff != 1: 

ret += latex(self._d_coeff) + ' d' 

else: 

ret += 'd' 

  

if not ret: 

return '0' 

return ret 

  

cpdef dict t_dict(self): 

r""" 

Return the ``dict``, whose keys are powers of `t` and values are 

elements of the classical Lie algebra, of ``self``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['A',1,1]) 

sage: x = L.an_element() 

sage: x.t_dict() 

{-1: E[alpha[1]], 

0: E[alpha[1]] + h1 + E[-alpha[1]], 

1: E[-alpha[1]]} 

""" 

return self._t_dict.copy() 

  

cpdef c_coefficient(self): 

r""" 

Return the coefficient of `c` of ``self``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['A',1,1]) 

sage: x = L.an_element() - 3 * L.c() 

sage: x.c_coefficient() 

-2 

""" 

return self._c_coeff 

  

cpdef d_coefficient(self): 

r""" 

Return the coefficient of `d` of ``self``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['A',1,1]) 

sage: x = L.an_element() + L.d() 

sage: x.d_coefficient() 

2 

""" 

return self._d_coeff 

  

cpdef _richcmp_(self, other, int op): 

""" 

Return the rich comparison of ``self`` with ``other``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['C',2,1]) 

sage: x = L.an_element() 

sage: c = L.basis()['c'] 

sage: d = L.basis()['d'] 

sage: c == d 

False 

sage: x != c 

True 

sage: 2*c - d == c + c - d 

True 

sage: x - c != x - c 

False 

sage: x - c != x - d 

True 

""" 

if op != Py_EQ and op != Py_NE: 

return NotImplemented 

cdef UntwistedAffineLieAlgebraElement rt = <UntwistedAffineLieAlgebraElement> other 

return richcmp((self._t_dict, self._c_coeff, self._d_coeff), 

(rt._t_dict, rt._c_coeff, rt._d_coeff), 

op) 

  

def __hash__(self): 

""" 

Return the hash of ``self``. 

  

EXAMPLES:: 

  

sage: asl = lie_algebras.Affine(QQ, ['A',4,1]) 

sage: x = asl.an_element() 

sage: hash(x) == hash(x) 

True 

sage: hash(asl.zero()) 

0 

""" 

if not self: 

self._hash = 0 

if self._hash == -1: 

self._hash = hash((tuple([self._t_dict[i] for i in sorted(self._t_dict)]), 

self._c_coeff, self._d_coeff)) 

return self._hash 

  

def __nonzero__(self): 

""" 

Return ``self`` as a boolean. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['C',2,1]) 

sage: x = L.an_element() 

sage: bool(x) 

True 

sage: bool(L.zero()) 

False 

""" 

return bool(self._t_dict) or bool(self._c_coeff) or bool(self._d_coeff) 

  

cpdef _add_(self, other): 

""" 

Add ``self`` and ``other``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['A',1,1]) 

sage: e1,f1,h1,e0,f0,c,d = list(L.lie_algebra_generators()) 

sage: e0.bracket(e1) + d + e1 + c + 3*d 

(E[alpha[1]])#t^0 + (-h1)#t^1 + c + 4*d 

""" 

cdef UntwistedAffineLieAlgebraElement rt = <UntwistedAffineLieAlgebraElement> other 

return type(self)(self._parent, add(self._t_dict, rt._t_dict), 

self._c_coeff + rt._c_coeff, 

self._d_coeff + rt._d_coeff) 

  

cpdef _sub_(self, other): 

""" 

Subtract ``self`` and ``other``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['A',1,1]) 

sage: e1,f1,h1,e0,f0,c,d = list(L.lie_algebra_generators()) 

sage: e0.bracket(e1) + d - e1 + c - 3*d 

(-E[alpha[1]])#t^0 + (-h1)#t^1 + c + -2*d 

sage: 4*c - e0.bracket(f0) 

(h1)#t^0 

sage: 4*c - e0.bracket(f0) - h1 

0 

sage: 4*c - e0.bracket(f0) - h1 == L.zero() 

True 

sage: e1 - f1 

(E[alpha[1]] - E[-alpha[1]])#t^0 

""" 

cdef UntwistedAffineLieAlgebraElement rt = <UntwistedAffineLieAlgebraElement> other 

return type(self)(self._parent, axpy(-1, rt._t_dict, self._t_dict), 

self._c_coeff - rt._c_coeff, 

self._d_coeff - rt._d_coeff) 

  

cpdef _neg_(self): 

""" 

Negate ``self``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['A',1,1]) 

sage: e1,f1,h1,e0,f0,c,d = list(L.lie_algebra_generators()) 

sage: x = e0.bracket(e1) + d + e1 + c + 3*d 

sage: -x 

(-E[alpha[1]])#t^0 + (h1)#t^1 + -1*c + -4*d 

""" 

return type(self)(self._parent, negate(self._t_dict), 

-self._c_coeff, -self._d_coeff) 

  

cpdef _acted_upon_(self, x, bint self_on_left): 

""" 

Return ``self`` acted upon by ``x``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['A',1,1]) 

sage: e1,f1,h1,e0,f0,c,d = list(L.lie_algebra_generators()) 

sage: x = e1 + f0.bracket(f1) + 3*c - 2/5 * d 

sage: x 

(E[alpha[1]])#t^0 + (h1)#t^-1 + 3*c + -2/5*d 

sage: -2 * x 

(-2*E[alpha[1]])#t^0 + (-2*h1)#t^-1 + -6*c + 4/5*d 

""" 

return type(self)(self._parent, scal(x, self._t_dict, self_on_left), 

x * self._c_coeff, 

x * self._d_coeff) 

  

cpdef monomial_coefficients(self, bint copy=True): 

""" 

Return the monomial coefficients of ``self``. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['C',2,1]) 

sage: x = L.an_element() 

sage: sorted(x.monomial_coefficients(), key=str) 

[(-2*alpha[1] - alpha[2], 1), 

(-alpha[1], 0), 

(-alpha[2], 0), 

(2*alpha[1] + alpha[2], -1), 

(alpha[1], 0), 

(alpha[2], 0), 

(alphacheck[1], 0), 

(alphacheck[2], 0), 

'c', 

'd'] 

""" 

cdef dict d = {} 

for t,g in self._t_dict.iteritems(): 

for k,c in g.monomial_coefficients(copy=False).iteritems(): 

d[k,t] = c 

if self._c_coeff: 

d['c'] = self._c_coeff 

if self._d_coeff: 

d['d'] = self._d_coeff 

return d 

  

cpdef bracket(self, right): 

""" 

Return the Lie bracket ``[self, right]``. 

  

EXAMPLES:: 

  

sage: L = LieAlgebra(QQ, cartan_type=['A',1,1]) 

sage: e1,f1,h1,e0,f0,c,d = list(L.lie_algebra_generators()) 

sage: e0.bracket(f0) 

(-h1)#t^0 + 4*c 

sage: e1.bracket(0) 

0 

sage: e1.bracket(1) 

Traceback (most recent call last): 

... 

TypeError: no common canonical parent for objects with parents: 

'Affine Kac-Moody algebra of ['A', 1] in the Chevalley basis' 

and 'Integer Ring' 

""" 

if not have_same_parent(self, right): 

self, right = coercion_model.canonical_coercion(self, right) 

return self._bracket_(right) 

  

cpdef _bracket_(self, y): 

""" 

Return the Lie bracket ``[self, y]``. 

  

EXAMPLES:: 

  

sage: L = LieAlgebra(QQ, cartan_type=['A',1,1]) 

sage: e1,f1,h1,e0,f0,c,d = list(L.lie_algebra_generators()) 

sage: al = RootSystem(['A',1]).root_lattice().simple_roots() 

sage: x = L.basis()[al[1], 5] 

sage: y = L.basis()[-al[1], -3] 

sage: z = L.basis()[-al[1], -5] 

sage: x._bracket_(y) 

(h1)#t^2 

sage: x._bracket_(z) 

(h1)#t^0 + 20*c 

sage: x._bracket_(e1) 

0 

sage: x._bracket_(f1) 

(h1)#t^5 

sage: x._bracket_(h1) 

(-2*E[alpha[1]])#t^5 

sage: x._bracket_(d) 

(-5*E[alpha[1]])#t^5 

sage: all(c._bracket_(g) == 0 for g in L.lie_algebra_generators()) 

True 

""" 

if not self or not y: 

return self._parent.zero() 

  

gd = self._parent._g.basis() 

cdef dict d = {} 

cdef UntwistedAffineLieAlgebraElement rt = <UntwistedAffineLieAlgebraElement>(y) 

c = self._parent.base_ring().zero() 

for tl,gl in self._t_dict.iteritems(): 

# d contribution from the left 

if rt._d_coeff: 

if tl in d: 

d[tl] -= rt._d_coeff * gl * tl 

else: 

d[tl] = -rt._d_coeff * gl * tl 

if not d[tl]: 

del d[tl] 

# main bracket of the central extension 

for tr,gr in rt._t_dict.iteritems(): 

b = gl.bracket(gr) 

if b: 

if tl+tr in d: 

d[tl+tr] += b 

else: 

d[tl+tr] = b 

if not d[tl+tr]: 

del d[tl+tr] 

if tl + tr == 0: 

c += gl.killing_form(gr) * tl 

  

# d contribution from the right 

if self._d_coeff: 

for tr,gr in rt._t_dict.iteritems(): 

if tr in d: 

d[tr] += self._d_coeff * gr * tr 

else: 

d[tr] = self._d_coeff * gr * tr 

if not d[tr]: 

del d[tr] 

  

return type(self)(self._parent, d, c, 

self._parent.base_ring().zero()) 

  

cpdef canonical_derivation(self): 

r""" 

Return the canonical derivation `d` applied to ``self``. 

  

The canonical derivation `d` is defined as 

  

.. MATH:: 

  

d(a \otimes t^m + \alpha c) = a \otimes m t^m. 

  

Another formulation is by `d = t \frac{d}{dt}`. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['E',6,1]) 

sage: al = RootSystem(['E',6]).root_lattice().simple_roots() 

sage: x = L.basis()[al[2]+al[3]+2*al[4]+al[5],5] + 4*L.c() + L.d() 

sage: x.canonical_derivation() 

(5*E[alpha[2] + alpha[3] + 2*alpha[4] + alpha[5]])#t^5 

""" 

cdef dict d = {tl: tl * gl for tl,gl in self._t_dict.iteritems() if tl != 0} 

zero = self._parent.base_ring().zero() 

return type(self)(self._parent, d, zero, zero) 

  

def _build_untwisted_affine_element(P, t_dict, c, d): 

""" 

Used to unpickle an element. 

  

EXAMPLES:: 

  

sage: L = lie_algebras.Affine(QQ, ['A',2,1]) 

sage: from sage.algebras.lie_algebras.lie_algebra_element import _build_untwisted_affine_element 

sage: _build_untwisted_affine_element(L, {}, 0, 0) == L.zero() 

True 

sage: x = L.an_element() 

sage: loads(dumps(x)) == x # indirect doctest 

True 

""" 

return P.element_class(P, t_dict, c, d)