Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

""" 

Virasoro Algebra and Related Lie Algebras 

 

AUTHORS: 

 

- Travis Scrimshaw (2013-05-03): Initial version 

""" 

 

#***************************************************************************** 

# Copyright (C) 2013-2017 Travis Scrimshaw <tcscrims at gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.misc.cachefunc import cached_method 

from sage.categories.lie_algebras import LieAlgebras 

from sage.rings.all import ZZ 

from sage.sets.family import Family 

from sage.sets.set import Set 

from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets 

from sage.structure.indexed_generators import IndexedGenerators 

from sage.algebras.lie_algebras.lie_algebra_element import LieAlgebraElement 

from sage.algebras.lie_algebras.lie_algebra import (InfinitelyGeneratedLieAlgebra, 

FinitelyGeneratedLieAlgebra) 

from sage.combinat.free_module import CombinatorialFreeModule 

 

class LieAlgebraRegularVectorFields(InfinitelyGeneratedLieAlgebra, IndexedGenerators): 

r""" 

The Lie algebra of regular vector fields on `\CC^{\times}`. 

 

This is the Lie algebra with basis `\{d_i\}_{i \in \ZZ}` and subject 

to the relations 

 

.. MATH:: 

 

[d_i, d_j] = (i - j) d_{i+j}. 

 

This is also known as the Witt (Lie) algebra. 

 

.. NOTE:: 

 

This differs from some conventions (e.g., [Ka1990]_), where 

we have `d'_i \mapsto -d_i`. 

 

REFERENCES: 

 

- :wikipedia:`Witt_algebra` 

 

.. SEEALSO:: 

 

:class:`WittLieAlgebra_charp` 

""" 

def __init__(self, R): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.regular_vector_fields(QQ) 

sage: TestSuite(L).run() 

""" 

cat = LieAlgebras(R).WithBasis() 

InfinitelyGeneratedLieAlgebra.__init__(self, R, index_set=ZZ, category=cat) 

IndexedGenerators.__init__(self, ZZ, prefix='d', bracket='[') 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: lie_algebras.regular_vector_fields(QQ) 

The Lie algebra of regular vector fields over Rational Field 

""" 

return "The Lie algebra of regular vector fields over {}".format(self.base_ring()) 

 

# For compatibility with CombinatorialFreeModuleElement 

_repr_term = IndexedGenerators._repr_generator 

_latex_term = IndexedGenerators._latex_generator 

 

@cached_method 

def lie_algebra_generators(self): 

""" 

Return the generators of ``self`` as a Lie algebra. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.regular_vector_fields(QQ) 

sage: L.lie_algebra_generators() 

Lazy family (generator map(i))_{i in Integer Ring} 

""" 

return Family(self._indices, self.monomial, name='generator map') 

 

def bracket_on_basis(self, i, j): 

""" 

Return the bracket of basis elements indexed by ``x`` and ``y`` 

where ``x < y``. 

 

(This particular implementation actually does not require 

``x < y``.) 

 

EXAMPLES:: 

 

sage: L = lie_algebras.regular_vector_fields(QQ) 

sage: L.bracket_on_basis(2, -2) 

4*d[0] 

sage: L.bracket_on_basis(2, 4) 

-2*d[6] 

sage: L.bracket_on_basis(4, 4) 

0 

""" 

return self.term(i + j, i - j) 

 

def _an_element_(self): 

""" 

Return an element of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.regular_vector_fields(QQ) 

sage: L.an_element() 

d[-1] + d[0] - 3*d[1] 

""" 

return self.monomial(0) - 3*self.monomial(1) + self.monomial(-1) 

 

def some_elements(self): 

""" 

Return some elements of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.regular_vector_fields(QQ) 

sage: L.some_elements() 

[d[0], d[2], d[-2], d[-1] + d[0] - 3*d[1]] 

""" 

return [self.monomial(0), self.monomial(2), self.monomial(-2), self.an_element()] 

 

class Element(LieAlgebraElement): 

pass 

 

class WittLieAlgebra_charp(FinitelyGeneratedLieAlgebra, IndexedGenerators): 

r""" 

The `p`-Witt Lie algebra over a ring `R` in which 

`p \cdot 1_R = 0`. 

 

Let `R` be a ring and `p` be a positive integer such that 

`p \cdot 1_R = 0`. The `p`-Witt Lie algebra over `R` is 

the Lie algebra with basis `\{d_0, d_1, \ldots, d_{p-1}\}` 

and subject to the relations 

 

.. MATH:: 

 

[d_i, d_j] = (i - j) d_{i+j}, 

 

where the `i+j` on the right hand side is identified with its 

remainder modulo `p`. 

 

.. SEEALSO:: 

 

:class:`LieAlgebraRegularVectorFields` 

""" 

def __init__(self, R, p): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.pwitt(GF(5), 5); L 

The 5-Witt Lie algebra over Finite Field of size 5 

sage: TestSuite(L).run() 

sage: L = lie_algebras.pwitt(Zmod(6), 6) 

sage: TestSuite(L).run() # not tested -- universal envelope doesn't work 

sage: L._test_jacobi_identity() 

""" 

if R(p) != 0: 

raise ValueError("{} is not 0 in {}".format(p, R)) 

cat = LieAlgebras(R).FiniteDimensional().WithBasis() 

FinitelyGeneratedLieAlgebra.__init__(self, R, index_set=range(p), category=cat) 

IndexedGenerators.__init__(self, range(p), prefix='d', bracket='[') 

self._p = p 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: lie_algebras.pwitt(Zmod(5), 5) 

The 5-Witt Lie algebra over Ring of integers modulo 5 

sage: lie_algebras.pwitt(Zmod(5), 15) 

The 15-Witt Lie algebra over Ring of integers modulo 5 

""" 

return "The {}-Witt Lie algebra over {}".format(self._p, self.base_ring()) 

 

# For compatibility with CombinatorialFreeModuleElement 

_repr_term = IndexedGenerators._repr_generator 

_latex_term = IndexedGenerators._latex_generator 

 

@cached_method 

def lie_algebra_generators(self): 

""" 

Return the generators of ``self`` as a Lie algebra. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.pwitt(Zmod(5), 5) 

sage: L.lie_algebra_generators() 

Finite family {0: d[0], 1: d[1], 2: d[2], 3: d[3], 4: d[4]} 

""" 

return Family(self._indices, self.monomial, name='generator map') 

 

def bracket_on_basis(self, i, j): 

""" 

Return the bracket of basis elements indexed by ``x`` and ``y`` 

where ``x < y``. 

 

(This particular implementation actually does not require 

``x < y``.) 

 

EXAMPLES:: 

 

sage: L = lie_algebras.pwitt(Zmod(5), 5) 

sage: L.bracket_on_basis(2, 3) 

4*d[0] 

sage: L.bracket_on_basis(3, 2) 

d[0] 

sage: L.bracket_on_basis(2, 2) 

0 

sage: L.bracket_on_basis(1, 3) 

3*d[4] 

""" 

return self.term((i + j) % self._p, i - j) 

 

def _an_element_(self): 

""" 

Return an element of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.pwitt(Zmod(5), 5) 

sage: L.an_element() 

d[0] + 2*d[1] + d[4] 

""" 

return self.monomial(0) - 3*self.monomial(1 % self._p) + self.monomial((-1) % self._p) 

 

def some_elements(self): 

""" 

Return some elements of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.pwitt(Zmod(5), 5) 

sage: L.some_elements() 

[d[0], d[2], d[3], d[0] + 2*d[1] + d[4]] 

""" 

return [self.monomial(0), self.monomial(2 % self._p), 

self.monomial((-2) % self._p), 

self.an_element()] 

 

class Element(LieAlgebraElement): 

pass 

 

def _basis_key(x): 

""" 

Helper function that generates a key for the basis elements 

of the Virasoro algebra. 

 

EXAMPLES:: 

 

sage: from sage.algebras.lie_algebras.virasoro import _basis_key 

sage: _basis_key('c') 

+Infinity 

sage: _basis_key(2) 

2 

""" 

if x == 'c': 

from sage.rings.infinity import infinity 

return infinity 

return x 

 

class VirasoroAlgebra(InfinitelyGeneratedLieAlgebra, IndexedGenerators): 

r""" 

The Virasoro algebra. 

 

This is the Lie algebra with basis `\{d_i\}_{i \in \ZZ} \cup \{c\}` 

and subject to the relations 

 

.. MATH:: 

 

[d_i, d_j] = (i - j) d_{i+j} + \frac{1}{12}(i^3 - i) \delta_{i,-j} c 

 

and 

 

.. MATH:: 

 

[d_i, c] = 0. 

 

(Here, it is assumed that the base ring `R` has `2` invertible.) 

 

This is the universal central extension `\widetilde{\mathfrak{d}}` of 

the Lie algebra `\mathfrak{d}` of 

:class:`regular vector fields <LieAlgebraRegularVectorFields>` 

on `\CC^{\times}`. 

 

EXAMPLES:: 

 

sage: d = lie_algebras.VirasoroAlgebra(QQ) 

 

REFERENCES: 

 

- :wikipedia:`Virasoro_algebra` 

""" 

def __init__(self, R): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: d = lie_algebras.VirasoroAlgebra(QQ) 

sage: TestSuite(d).run() 

""" 

cat = LieAlgebras(R).WithBasis() 

InfinitelyGeneratedLieAlgebra.__init__(self, R, index_set=ZZ, category=cat) 

IndexedGenerators.__init__(self, ZZ, prefix='d', bracket='[', 

sorting_key=_basis_key) 

 

def _repr_term(self, m): 

""" 

Return a string representation of the term indexed by ``m``. 

 

EXAMPLES:: 

 

sage: d = lie_algebras.VirasoroAlgebra(QQ) 

sage: d._repr_term('c') 

'c' 

sage: d._repr_term(2) 

'd[2]' 

""" 

if isinstance(m, str): 

return m 

return IndexedGenerators._repr_generator(self, m) 

 

def _latex_term(self, m): 

r""" 

Return a `\LaTeX` representation of the term indexed by ``m``. 

 

EXAMPLES:: 

 

sage: d = lie_algebras.VirasoroAlgebra(QQ) 

sage: d._latex_term('c') 

'c' 

sage: d._latex_term(2) 

'd_{2}' 

sage: d._latex_term(-13) 

'd_{-13}' 

""" 

if isinstance(m, str): 

return m 

return IndexedGenerators._latex_generator(self, m) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: lie_algebras.VirasoroAlgebra(QQ) 

The Virasoro algebra over Rational Field 

""" 

return "The Virasoro algebra over {}".format(self.base_ring()) 

 

@cached_method 

def lie_algebra_generators(self): 

""" 

Return the generators of ``self`` as a Lie algebra. 

 

EXAMPLES:: 

 

sage: d = lie_algebras.VirasoroAlgebra(QQ) 

sage: d.lie_algebra_generators() 

Lazy family (generator map(i))_{i in Integer Ring} 

""" 

return Family(self._indices, self.monomial, name='generator map') 

 

@cached_method 

def basis(self): 

""" 

Return a basis of ``self``. 

 

EXAMPLES:: 

 

sage: d = lie_algebras.VirasoroAlgebra(QQ) 

sage: B = d.basis(); B 

Lazy family (basis map(i))_{i in Disjoint union of 

Family ({'c'}, Integer Ring)} 

sage: B['c'] 

c 

sage: B[3] 

d[3] 

sage: B[-15] 

d[-15] 

""" 

I = DisjointUnionEnumeratedSets([Set(['c']), ZZ]) 

return Family(I, self.monomial, name='basis map') 

 

def d(self, i): 

""" 

Return the element `d_i` in ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: L.d(2) 

d[2] 

""" 

return self.monomial(i) 

 

def c(self): 

""" 

The central element `c` in ``self``. 

 

EXAMPLES:: 

 

sage: d = lie_algebras.VirasoroAlgebra(QQ) 

sage: d.c() 

c 

""" 

return self.monomial('c') 

 

def bracket_on_basis(self, i, j): 

""" 

Return the bracket of basis elements indexed by ``x`` and ``y`` 

where ``x < y``. 

 

(This particular implementation actually does not require 

``x < y``.) 

 

EXAMPLES:: 

 

sage: d = lie_algebras.VirasoroAlgebra(QQ) 

sage: d.bracket_on_basis('c', 2) 

0 

sage: d.bracket_on_basis(2, -2) 

4*d[0] + 1/2*c 

""" 

if i == 'c' or j == 'c': 

return self.zero() 

ret = self._from_dict({i + j: i-j}) 

R = self.base_ring() 

if i == -j: 

ret += R(i ** 3 - i) / R(12) * self.c() 

return ret 

 

def _an_element_(self): 

""" 

Return an element of ``self``. 

 

EXAMPLES:: 

 

sage: d = lie_algebras.VirasoroAlgebra(QQ) 

sage: d.an_element() 

d[-1] + d[0] - 1/2*d[1] + c 

""" 

d = self.monomial 

return d(0) - self.base_ring().an_element()*d(1) + d(-1) + d('c') 

 

def some_elements(self): 

""" 

Return some elements of ``self``. 

 

EXAMPLES:: 

 

sage: d = lie_algebras.VirasoroAlgebra(QQ) 

sage: d.some_elements() 

[d[0], d[2], d[-2], c, d[-1] + d[0] - 1/2*d[1] + c] 

""" 

d = self.monomial 

return [d(0), d(2), d(-2), d('c'), self.an_element()] 

 

def chargeless_representation(self, a, b): 

""" 

Return the chargeless representation of ``self`` with 

parameters ``a`` and ``b``. 

 

.. SEEALSO:: 

 

:class:`~sage.algebras.lie_algebras.virasoro.ChargelessRepresentation` 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: L.chargeless_representation(3, 2) 

Chargeless representation (3, 2) of 

The Virasoro algebra over Rational Field 

""" 

return ChargelessRepresentation(self, a, b) 

 

def verma_module(self, c, h): 

""" 

Return the Verma module with central charge ``c`` and 

conformal (or highest) weight ``h``. 

 

.. SEEALSO:: 

 

:class:`~sage.algebras.lie_algebras.virasoro.VermaModule` 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: L.verma_module(3, 2) 

Verma module with charge 3 and confromal weight 2 of 

The Virasoro algebra over Rational Field 

""" 

return VermaModule(self, c, h) 

 

class Element(LieAlgebraElement): 

pass 

 

##################################################################### 

## Representations 

 

class ChargelessRepresentation(CombinatorialFreeModule): 

r""" 

A chargeless representation of the Virasoro algebra. 

 

Let `L` be the Virasoro algebra over the field `F` of 

characteristic `0`. For `\alpha, \beta \in R`, we denote `V_{a,b}` 

as the `(a, b)`-*chargeless representation* of `L`, which is the 

`F`-span of `\{v_k \mid k \in \ZZ\}` with `L` action 

 

.. MATH:: 

 

\begin{aligned} 

d_n \cdot v_k & = (a n + b - k) v_{n+k}, 

\\ c \cdot v_k & = 0, 

\end{aligned} 

 

This comes from the action of `d_n = -t^{n+1} \frac{d}{dt}` on 

`F[t, t^{-1}]` (recall that `L` is the central extension of the 

:class:`algebra of derivations <LieAlgebraRegularVectorFields>` 

of `F[t, t^{-1}]`), where 

 

.. MATH:: 

 

V_{a,b} = F[t, t^{-1}] t^{a-b} (dt)^{-a} 

 

and `v_k = t^{a-b+k} (dz)^{-a}`. 

 

The chargeless representations are either irreducible or 

contains exactly two simple subquotients, one of which is the 

trivial representation and the other is `F[t, t^{-1}] / F`. 

The non-trivial simple subquotients are called the 

*intermediate series*. 

 

The module `V_{a,b}` is irreducible if and only if 

`a \neq 0, -1` or `b \notin \ZZ`. When `a = 0` and `b \in \ZZ`, 

then there exists a subrepresentation isomorphic to the trivial 

representation. If `a = -1` and `b \in \ZZ`, then there exists 

a subrepresentation `V` such that `V_{a,b} / V` is isomorphic 

to `K \frac{dt}{t}` and `V` is irreducible. 

 

In characteristic `p`, the non-trivial simple subquotient 

is isomorphic to `F[t, t^{-1}] / F[t^p, t^{-p}]`. For 

`p \neq 2,3`, then the action is given as above. 

 

EXAMPLES: 

 

We first construct the irreducible `V_{1/2, 3/4}` and do some 

basic computations:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.chargeless_representation(1/2, 3/4) 

sage: d = L.basis() 

sage: v = M.basis() 

sage: d[3] * v[2] 

1/4*v[5] 

sage: d[3] * v[-1] 

13/4*v[2] 

sage: (d[3] - d[-2]) * (v[-1] + 1/2*v[0] - v[4]) 

-3/4*v[-3] + 1/8*v[-2] - v[2] + 9/8*v[3] + 7/4*v[7] 

 

We construct the reducible `V_{0,2}` and the trivial 

subrepresentation given by the span of `v_2`. We verify 

this for `\{d_i \mid -10 \leq i < 10\}`:: 

 

sage: M = L.chargeless_representation(0, 2) 

sage: v = M.basis() 

sage: all(d[i] * v[2] == M.zero() for i in range(-10, 10)) 

True 

 

REFERENCES: 

 

- [Mat1992]_ 

- [IK2010]_ 

""" 

def __init__(self, V, a, b): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.chargeless_representation(1/2, 3/4) 

sage: TestSuite(M).run() 

""" 

self._a = a 

self._b = b 

self._V = V 

if V.base_ring().characteristic() in [2,3]: 

raise NotImplementedError("not implemented for characteristic 2,3") 

CombinatorialFreeModule.__init__(self, V.base_ring(), ZZ, 

prefix='v') 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: L.chargeless_representation(1/2, 3/4) 

Chargeless representation (1/2, 3/4) of 

The Virasoro algebra over Rational Field 

""" 

return "Chargeless representation ({}, {}) of {}".format( 

self._a, self._b, self._V) 

 

def parameters(self): 

""" 

Return the parameters `(a, b)` of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.chargeless_representation(1/2, 3/4) 

sage: M.parameters() 

(1/2, 3/4) 

""" 

return (self._a, self._b) 

 

def virasoro_algebra(self): 

""" 

Return the Virasoro algebra ``self`` is a representation of. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.chargeless_representation(1/2, 3/4) 

sage: M.virasoro_algebra() is L 

True 

""" 

return self._V 

 

class Element(CombinatorialFreeModule.Element): 

def _acted_upon_(self, scalar, self_on_left=False): 

""" 

Return the action of ``scalar`` on ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: d = L.basis() 

sage: M = L.chargeless_representation(1/2, 3/4) 

sage: x = d[-5] * M.an_element() + M.basis()[10]; x 

-9/4*v[-6] - 7/4*v[-5] - 33/4*v[-4] + v[10] 

sage: d[2] * x 

-279/16*v[-4] - 189/16*v[-3] - 759/16*v[-2] - 33/4*v[12] 

 

sage: v = M.basis() 

sage: all(d[i]*(d[j]*v[k]) - d[j]*(d[i]*v[k]) == d[i].bracket(d[j])*v[k] 

....: for i in range(-5, 5) for j in range(-5, 5) for k in range(-5, 5)) 

True 

""" 

P = self.parent() 

# We implement only a left action 

if not self_on_left and scalar in P._V: 

scalar = P._V(scalar) 

return P.sum_of_terms((n+k, (P._a * n + P._b - k) * cv * cm) 

for n,cv in scalar.monomial_coefficients(copy=False).items() if n != 'c' 

for k,cm in self.monomial_coefficients(copy=False).items()) 

return CombinatorialFreeModule.Element._acted_upon_(self, scalar, self_on_left) 

 

_rmul_ = _lmul_ = _acted_upon_ 

 

class VermaModule(CombinatorialFreeModule): 

""" 

A Verma module of the Virasoro algebra. 

 

The Virasoro algebra admits a triangular decomposition 

 

.. MATH:: 

 

V_- \oplus R d_0 \oplus R \hat{c} \oplus V_+, 

 

where `V_-` (resp. `V_+`) is the span of `\{d_i \mid i < 0\}` 

(resp. `\{d_i \mid i > 0\}`). We can construct the *Verma module* 

`M_{c,h}` as the induced representation of the `R d_0 \oplus 

R \hat{c} \oplus V_+` representation `R_{c,H} = Rv`, where 

 

.. MATH:: 

 

V_+ v = 0, \qquad \hat{c} v = c v, \qquad d_0 v = h v. 

 

Therefore, we have a basis of `M_{c,h}` 

 

.. MATH:: 

 

\{ L_{i_1} \cdots L_{i_k} v \mid i_1 \leq \cdots \leq i_k < 0 \}. 

 

Moreover, the Verma modules are the free objects in the category of 

highest weight representations of `V` and are indecomposable. 

The Verma module `M_{c,h}` is irreducible for generic values of `c` 

and `h` and when it is reducible, the quotient by the maximal 

submodule is the unique irreducible highest weight representation 

`V_{c,h}`. 

 

EXAMPLES: 

 

We construct a Verma module and do some basic computations:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(3, 0) 

sage: d = L.basis() 

sage: v = M.highest_weight_vector() 

sage: d[3] * v 

0 

sage: d[-3] * v 

d[-3]*v 

sage: d[-1] * (d[-3] * v) 

2*d[-4]*v + d[-3]*d[-1]*v 

sage: d[2] * (d[-1] * (d[-3] * v)) 

12*d[-2]*v + 5*d[-1]*d[-1]*v 

 

We verify that `d_{-1} v` is a singular vector for 

`\{d_i \mid 1 \leq i < 20\}`:: 

 

sage: w = M.basis()[-1]; w 

d[-1]*v 

sage: all(d[i] * w == M.zero() for i in range(1,20)) 

True 

 

We also verify a singular vector for `V_{-2,1}`:: 

 

sage: M = L.verma_module(-2, 1) 

sage: B = M.basis() 

sage: w = B[-1,-1] - 2 * B[-2] 

sage: d = L.basis() 

sage: all(d[i] * w == M.zero() for i in range(1,20)) 

True 

 

REFERENCES: 

 

- :wikipedia:`Virasoro_algebra#Representation_theory` 

""" 

@staticmethod 

def __classcall_private__(cls, V, c, h): 

""" 

Normalize input to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(3, 1/2) 

sage: M2 = L.verma_module(int(3), 1/2) 

sage: M is M2 

True 

""" 

R = V.base_ring() 

return super(VermaModule, cls).__classcall__(cls, V, R(c), R(h)) 

 

@staticmethod 

def _partition_to_neg_tuple(x): 

""" 

Helper function to convert a partition to an increasing 

sequence of negative numbers. 

 

EXAMPLES:: 

 

sage: from sage.algebras.lie_algebras.virasoro import VermaModule 

sage: VermaModule._partition_to_neg_tuple([3,2,2,1]) 

(-3, -2, -2, -1) 

""" 

# The entries of the partition are likely ints, but we need to 

# make sure they are Integers. 

return tuple([ZZ(-i) for i in x]) 

 

def __init__(self, V, c, h): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(3, 1/2) 

sage: TestSuite(M).run() 

""" 

self._c = c 

self._h = h 

self._V = V 

from sage.combinat.partition import _Partitions 

indices = _Partitions.map(VermaModule._partition_to_neg_tuple) 

CombinatorialFreeModule.__init__(self, V.base_ring(), 

indices, prefix='v') 

 

def _repr_term(self, k): 

""" 

Return a string representation for the term indexed by ``k``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(1, -2) 

sage: M._repr_term((-3,-2,-2,-1)) 

'd[-3]*d[-2]*d[-2]*d[-1]*v' 

""" 

if not k: 

return 'v' 

d = self._V.basis() 

return '*'.join(repr(d[i]) for i in k) + '*v' 

 

def _latex_term(self, k): 

""" 

Return a latex representation for the term indexed by ``k``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(1, -2) 

sage: M._latex_term((-3,-2,-2,-1)) 

'd_{-3} d_{-2} d_{-2} d_{-1} v' 

""" 

if not k: 

return 'v' 

d = self._V.basis() 

from sage.misc.latex import latex 

return ' '.join(latex(d[i]) for i in k) + ' v' 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(3, 0) 

sage: M 

Verma module with charge 3 and confromal weight 0 of 

The Virasoro algebra over Rational Field 

""" 

return "Verma module with charge {} and confromal weight {} of {}".format( 

self._c, self._h, self._V) 

 

def _monomial(self, index): 

""" 

TESTS:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(3, 0) 

sage: v = M.basis() 

sage: v[-3] # indirect doctest 

d[-3]*v 

sage: v[-3,-2,-2] # indirect doctest 

d[-3]*d[-2]*d[-2]*v 

""" 

if index in ZZ: 

if index >= 0: 

raise ValueError("sequence must have non-positive entries") 

index = (index,) 

return super(VermaModule, self)._monomial(index) 

 

def central_charge(self): 

""" 

Return the central charge of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(3, 0) 

sage: M.central_charge() 

3 

""" 

return self._c 

 

def conformal_weight(self): 

""" 

Return the conformal weight of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(3, 0) 

sage: M.conformal_weight() 

3 

""" 

return self._c 

 

def virasoro_algebra(self): 

""" 

Return the Virasoro algebra ``self`` is a representation of. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(1/2, 3/4) 

sage: M.virasoro_algebra() is L 

True 

""" 

return self._V 

 

@cached_method 

def highest_weight_vector(self): 

""" 

Return the highest weight vector of ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(-2/7, 3) 

sage: M.highest_weight_vector() 

v 

""" 

return self.monomial(()) 

 

def _d_action_on_basis(self, n, k): 

""" 

Return the action of `d_n` on `v_k`. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: M = L.verma_module(-2/7, 3) 

sage: M._d_action_on_basis(-3, ()) 

d[-3]*v 

sage: M._d_action_on_basis(0, ()) 

3*v 

sage: M._d_action_on_basis('c', ()) 

-2/7*v 

sage: M._d_action_on_basis('c', (-4,-2,-2,-1)) 

-2/7*d[-4]*d[-2]*d[-2]*d[-1]*v 

sage: M._d_action_on_basis(3, (-4,-2,-2,-1)) 

7*d[-5]*d[-1]*v + 60*d[-4]*d[-2]*v + 15*d[-4]*d[-1]*d[-1]*v 

+ 14*d[-3]*d[-2]*d[-1]*v + 7*d[-2]*d[-2]*d[-1]*d[-1]*v 

sage: M._d_action_on_basis(-1, (-4,-2,-2,-1)) 

d[-9]*d[-1]*v + d[-5]*d[-4]*d[-1]*v + 3*d[-5]*d[-2]*d[-2]*d[-1]*v 

+ 2*d[-4]*d[-3]*d[-2]*d[-1]*v + d[-4]*d[-2]*d[-2]*d[-1]*d[-1]*v 

""" 

# c acts my multiplication by self._c on all elements 

if n == 'c': 

return self.term(k, self._c) 

 

# when k corresponds to the highest weight vector 

if not k: 

if n > 0: 

return self.zero() 

if n == 0: 

return self.term(k, self._h) 

return self.monomial((n,)) 

 

# The basis are eigenvectors for d_0 

if n == 0: 

return self.term(k, self._h - sum(k)) 

 

# We keep things in order 

if n <= k[0]: 

return self.monomial((n,) + k) 

 

# [L_n, L_m] v = L_n L_m v - L_m L_n v 

# L_n L_m v = L_m L_n v + [L_n, L_m] v 

d = self._V.basis() 

m = k[0] 

k = k[1:] 

# We need to explicitly call the action as this method is 

# used in discovering the action 

return (self._d_action_on_basis(n, k)._acted_upon_(d[m], False) 

+ self.monomial(k)._acted_upon_(d[n].bracket(d[m]), False)) 

 

class Element(CombinatorialFreeModule.Element): 

def _acted_upon_(self, scalar, self_on_left=False): 

""" 

Return the action of ``scalar`` on ``self``. 

 

EXAMPLES:: 

 

sage: L = lie_algebras.VirasoroAlgebra(QQ) 

sage: d = L.basis() 

sage: M = L.verma_module(1/2, 3/4) 

sage: x = d[-5] * M.an_element() + M.basis()[-10]; x 

d[-10]*v + 2*d[-5]*v + 3*d[-5]*d[-2]*v + 2*d[-5]*d[-1]*v 

sage: d[2] * x 

12*d[-8]*v + 39/4*d[-5]*v + 14*d[-3]*v + 21*d[-3]*d[-2]*v 

+ 14*d[-3]*d[-1]*v 

sage: v = M.highest_weight_vector() 

sage: d[2] * (d[-2] * v) 

13/4*v 

 

sage: it = iter(M.basis()) 

sage: B = [next(it) for _ in range(10)] 

sage: all(d[i]*(d[j]*v) - d[j]*(d[i]*v) == d[i].bracket(d[j])*v 

....: for i in range(-5, 5) for j in range(-5, 5) for v in B) 

True 

""" 

P = self.parent() 

# We implement only a left action 

if not self_on_left and scalar in P._V: 

scalar = P._V(scalar) 

return P.linear_combination((P._d_action_on_basis(n, k), cv * cm) 

for n,cv in scalar.monomial_coefficients(copy=False).items() 

for k,cm in self.monomial_coefficients(copy=False).items()) 

return CombinatorialFreeModule.Element._acted_upon_(self, scalar, self_on_left) 

 

_rmul_ = _lmul_ = _acted_upon_