Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

""" 

Nil-Coxeter Algebra 

""" 

#***************************************************************************** 

# Copyright (C) 2011 Chris Berg <cberg at fields.utoronto.ca> 

# Anne Schilling <anne at math.ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from sage.algebras.iwahori_hecke_algebra import IwahoriHeckeAlgebra 

from sage.combinat.sf.sf import SymmetricFunctions 

from sage.misc.misc_c import prod 

from sage.rings.rational_field import QQ 

from sage.combinat.partition import Partitions 

 

class NilCoxeterAlgebra(IwahoriHeckeAlgebra.T): 

r""" 

Construct the Nil-Coxeter algebra of given type. 

 

This is the algebra 

with generators `u_i` for every node `i` of the corresponding Dynkin 

diagram. It has the usual braid relations (from the Weyl group) as well 

as the quadratic relation `u_i^2 = 0`. 

 

INPUT: 

 

- ``W`` -- a Weyl group 

 

OPTIONAL ARGUMENTS: 

 

- ``base_ring`` -- a ring (default is the rational numbers) 

- ``prefix`` -- a label for the generators (default "u") 

 

EXAMPLES:: 

 

sage: U = NilCoxeterAlgebra(WeylGroup(['A',3,1])) 

sage: u0, u1, u2, u3 = U.algebra_generators() 

sage: u1*u1 

0 

sage: u2*u1*u2 == u1*u2*u1 

True 

sage: U.an_element() 

u[0,1,2,3] + 2*u[0] + 3*u[1] + 1 

""" 

 

def __init__(self, W, base_ring = QQ, prefix='u'): 

r""" 

Initiate the affine nil-Coxeter algebra corresponding to the Weyl 

group `W` over the base ring. 

 

EXAMPLES:: 

 

sage: U = NilCoxeterAlgebra(WeylGroup(['A',3,1])); U 

The Nil-Coxeter Algebra of Type A3~ over Rational Field 

sage: TestSuite(U).run() 

 

sage: U = NilCoxeterAlgebra(WeylGroup(['C',3]), ZZ); U 

The Nil-Coxeter Algebra of Type C3 over Integer Ring 

sage: TestSuite(U).run() 

""" 

 

self._W = W 

self._n = W.n 

self._base_ring = base_ring 

self._cartan_type = W.cartan_type() 

H = IwahoriHeckeAlgebra(W, 0, 0, base_ring=base_ring) 

super(IwahoriHeckeAlgebra.T,self).__init__(H, prefix=prefix) 

 

def _repr_(self): 

r""" 

EXAMPLES :: 

 

sage: NilCoxeterAlgebra(WeylGroup(['A',3,1])) # indirect doctest 

The Nil-Coxeter Algebra of Type A3~ over Rational Field 

 

""" 

 

return "The Nil-Coxeter Algebra of Type %s over %s"%(self._cartan_type._repr_(compact=True), self.base_ring()) 

 

def homogeneous_generator_noncommutative_variables(self, r): 

r""" 

Give the `r^{th}` homogeneous function inside the Nil-Coxeter algebra. 

In finite type `A` this is the sum of all decreasing elements of length `r`. 

In affine type `A` this is the sum of all cyclically decreasing elements of length `r`. 

This is only defined in finite type `A`, `B` and affine types `A^{(1)}`, `B^{(1)}`, `C^{(1)}`, `D^{(1)}`. 

 

INPUT: 

 

- ``r`` -- a positive integer at most the rank of the Weyl group 

 

EXAMPLES:: 

 

sage: U = NilCoxeterAlgebra(WeylGroup(['A',3,1])) 

sage: U.homogeneous_generator_noncommutative_variables(2) 

u[1,0] + u[2,0] + u[0,3] + u[3,2] + u[3,1] + u[2,1] 

 

sage: U = NilCoxeterAlgebra(WeylGroup(['B',4])) 

sage: U.homogeneous_generator_noncommutative_variables(2) 

u[1,2] + u[2,1] + u[3,1] + u[4,1] + u[2,3] + u[3,2] + u[4,2] + u[3,4] + u[4,3] 

 

sage: U = NilCoxeterAlgebra(WeylGroup(['C',3])) 

sage: U.homogeneous_generator_noncommutative_variables(2) 

Traceback (most recent call last): 

... 

AssertionError: Analogue of symmetric functions in noncommutative variables is not defined in type ['C', 3] 

 

TESTS:: 

 

sage: U = NilCoxeterAlgebra(WeylGroup(['B',3,1])) 

sage: U.homogeneous_generator_noncommutative_variables(-1) 

0 

sage: U.homogeneous_generator_noncommutative_variables(0) 

1 

 

""" 

assert (len(self._cartan_type) == 2 and self._cartan_type[0] in ['A','B']) or (len(self._cartan_type) == 3 and self._cartan_type[2] == 1), "Analogue of symmetric functions in noncommutative variables is not defined in type %s"%(self._cartan_type) 

if r >= self._n: 

return self.zero() 

return self.sum_of_monomials(w for w in self._W.pieri_factors() if w.length() == r) 

 

def homogeneous_noncommutative_variables(self,la): 

r""" 

Give the homogeneous function indexed by `la`, viewed inside the Nil-Coxeter algebra. 

This is only defined in finite type `A`, `B` and affine types `A^{(1)}`, `B^{(1)}`, `C^{(1)}`, `D^{(1)}`. 

 

INPUT: 

 

- ``la`` -- a partition with first part bounded by the rank of the Weyl group 

 

EXAMPLES:: 

 

sage: U = NilCoxeterAlgebra(WeylGroup(['B',2,1])) 

sage: U.homogeneous_noncommutative_variables([2,1]) 

u[1,2,0] + 2*u[2,1,0] + u[0,2,0] + u[0,2,1] + u[1,2,1] + u[2,1,2] + u[2,0,2] + u[1,0,2] 

 

TESTS:: 

 

sage: U = NilCoxeterAlgebra(WeylGroup(['B',2,1])) 

sage: U.homogeneous_noncommutative_variables([]) 

1 

 

""" 

return prod(self.homogeneous_generator_noncommutative_variables(p) for p in la) 

 

def k_schur_noncommutative_variables(self, la): 

r""" 

In type `A^{(1)}` this is the `k`-Schur function in noncommutative variables 

defined by Thomas Lam [Lam2005]_. 

 

This function is currently only defined in type `A^{(1)}`. 

 

INPUT: 

 

- ``la`` -- a partition with first part bounded by the rank of the Weyl group 

 

EXAMPLES:: 

 

sage: A = NilCoxeterAlgebra(WeylGroup(['A',3,1])) 

sage: A.k_schur_noncommutative_variables([2,2]) 

u[0,3,1,0] + u[3,1,2,0] + u[1,2,0,1] + u[3,2,0,3] + u[2,0,3,1] + u[2,3,1,2] 

 

TESTS:: 

 

sage: A = NilCoxeterAlgebra(WeylGroup(['A',3,1])) 

sage: A.k_schur_noncommutative_variables([]) 

1 

 

sage: A.k_schur_noncommutative_variables([1,2]) 

Traceback (most recent call last): 

... 

AssertionError: [1, 2] is not a partition. 

 

sage: A.k_schur_noncommutative_variables([4,2]) 

Traceback (most recent call last): 

... 

AssertionError: [4, 2] is not a 3-bounded partition. 

 

sage: C = NilCoxeterAlgebra(WeylGroup(['C',3,1])) 

sage: C.k_schur_noncommutative_variables([2,2]) 

Traceback (most recent call last): 

... 

AssertionError: Weyl Group of type ['C', 3, 1] (as a matrix group acting on the root space) is not affine type A. 

 

 

""" 

assert self._cartan_type[0] == 'A' and len(self._cartan_type) == 3 and self._cartan_type[2] == 1, "%s is not affine type A."%(self._W) 

assert la in Partitions(), "%s is not a partition."%(la) 

assert (len(la) == 0 or la[0] < self._W.n), "%s is not a %s-bounded partition."%(la, self._W.n-1) 

Sym = SymmetricFunctions(self._base_ring) 

h = Sym.homogeneous() 

ks = Sym.kschur(self._n-1,1) 

f = h(ks[la]) 

return sum(f.coefficient(x)*self.homogeneous_noncommutative_variables(x) for x in f.support())