Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

r""" 

Orlik-Solomon Algebras 

""" 

 

#***************************************************************************** 

# Copyright (C) 2015 William Slofstra 

# Travis Scrimshaw <tscrimsh at umn.edu> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.misc.cachefunc import cached_method 

from sage.combinat.free_module import CombinatorialFreeModule 

from sage.categories.algebras import Algebras 

from sage.sets.family import Family 

 

class OrlikSolomonAlgebra(CombinatorialFreeModule): 

r""" 

An Orlik-Solomon algebra. 

 

Let `R` be a commutative ring. Let `M` be a matroid with ground set 

`X`. Let `C(M)` denote the set of circuits of `M`. Let `E` denote 

the exterior algebra over `R` generated by `\{ e_x \mid x \in X \}`. 

The *Orlik-Solomon ideal* `J(M)` is the ideal of `E` generated by 

 

.. MATH:: 

 

\partial e_S := \sum_{i=1}^t (-1)^{i-1} e_{j_1} \wedge e_{j_2} 

\wedge \cdots \wedge \widehat{e}_{j_i} \wedge \cdots \wedge e_{j_t} 

 

for all `S = \left\{ j_1 < j_2 < \cdots < j_t \right\} \in C(M)`, 

where `\widehat{e}_{j_i}` means that the term `e_{j_i}` is being 

omitted. The notation `\partial e_S` is not a coincidence, as 

`\partial e_S` is actually the image of 

`e_S := e_{j_1} \wedge e_{j_2} \wedge \cdots \wedge e_{j_t}` under the 

unique derivation `\partial` of `E` which sends all `e_x` to `1`. 

 

It is easy to see that `\partial e_S \in J(M)` not only for circuits 

`S`, but also for any dependent set `S` of `M`. Moreover, every 

dependent set `S` of `M` satisfies `e_S \in J(M)`. 

 

The *Orlik-Solomon algebra* `A(M)` is the quotient `E / J(M)`. This is 

a graded finite-dimensional skew-commutative `R`-algebra. Fix 

some ordering on `X`; then, the NBC sets of `M` (that is, the subsets 

of `X` containing no broken circuit of `M`) form a basis of `A(M)`. 

(Here, a *broken circuit* of `M` is defined to be the result of 

removing the smallest element from a circuit of `M`.) 

 

In the current implementation, the basis of `A(M)` is indexed by the 

NBC sets, which are implemented as frozensets. 

 

INPUT: 

 

- ``R`` -- the base ring 

- ``M`` -- the defining matroid 

- ``ordering`` -- (optional) an ordering of the ground set 

 

EXAMPLES: 

 

We create the Orlik-Solomon algebra of the uniform matroid `U(3, 4)` 

and do some basic computations:: 

 

sage: M = matroids.Uniform(3, 4) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: OS.dimension() 

14 

sage: G = OS.algebra_generators() 

sage: M.broken_circuits() 

frozenset({frozenset({1, 2, 3})}) 

sage: G[1] * G[2] * G[3] 

OS{0, 1, 2} - OS{0, 1, 3} + OS{0, 2, 3} 

 

REFERENCES: 

 

- :wikipedia:`Arrangement_of_hyperplanes#The_Orlik-Solomon_algebra` 

 

- [CE2001]_ 

""" 

@staticmethod 

def __classcall_private__(cls, R, M, ordering=None): 

""" 

Normalize input to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: M = matroids.Wheel(3) 

sage: from sage.algebras.orlik_solomon import OrlikSolomonAlgebra 

sage: OS1 = OrlikSolomonAlgebra(QQ, M) 

sage: OS2 = OrlikSolomonAlgebra(QQ, M, ordering=(0,1,2,3,4,5)) 

sage: OS3 = OrlikSolomonAlgebra(QQ, M, ordering=[0,1,2,3,4,5]) 

sage: OS1 is OS2 and OS2 is OS3 

True 

""" 

if ordering is None: 

ordering = sorted(M.groundset()) 

return super(OrlikSolomonAlgebra, cls).__classcall__(cls, R, M, tuple(ordering)) 

 

def __init__(self, R, M, ordering=None): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: M = matroids.Wheel(3) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: TestSuite(OS).run() 

 

We check on the matroid associated to the graph with 3 vertices and 

2 edges between each vertex:: 

 

sage: G = Graph([[1,2],[1,2],[2,3],[2,3],[1,3],[1,3]], multiedges=True) 

sage: M = Matroid(G) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: elts = OS.some_elements() + list(OS.algebra_generators()) 

sage: TestSuite(OS).run(elements=elts) 

""" 

self._M = M 

self._sorting = {x:i for i,x in enumerate(ordering)} 

 

# set up the dictionary of broken circuits 

self._broken_circuits = dict() 

for c in self._M.circuits(): 

L = sorted(c, key=lambda x: self._sorting[x]) 

self._broken_circuits[frozenset(L[1:])] = L[0] 

 

cat = Algebras(R).FiniteDimensional().WithBasis().Graded() 

CombinatorialFreeModule.__init__(self, R, M.no_broken_circuits_sets(ordering), 

prefix='OS', bracket='{', 

sorting_key=self._sort_key, 

category=cat) 

 

def _sort_key(self, x): 

""" 

Return the key used to sort the terms. 

 

EXAMPLES:: 

 

sage: M = matroids.Wheel(3) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: OS._sort_key(frozenset({1, 2})) 

(-2, [1, 2]) 

sage: OS._sort_key(frozenset({0, 1, 2})) 

(-3, [0, 1, 2]) 

sage: OS._sort_key(frozenset({})) 

(0, []) 

""" 

return (-len(x), sorted(x)) 

 

def _repr_term(self, m): 

""" 

Return a string representation of the basis element indexed by `m`. 

 

EXAMPLES:: 

 

sage: M = matroids.Uniform(3, 4) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: OS._repr_term(frozenset([0])) 

'OS{0}' 

""" 

return "OS{{{}}}".format(', '.join(str(t) for t in sorted(m))) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: M = matroids.Wheel(3) 

sage: M.orlik_solomon_algebra(QQ) 

Orlik-Solomon algebra of Wheel(3): Regular matroid of rank 3 

on 6 elements with 16 bases 

""" 

return "Orlik-Solomon algebra of {}".format(self._M) 

 

@cached_method 

def one_basis(self): 

""" 

Return the index of the basis element corresponding to `1` 

in ``self``. 

 

EXAMPLES:: 

 

sage: M = matroids.Wheel(3) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: OS.one_basis() == frozenset([]) 

True 

""" 

return frozenset({}) 

 

@cached_method 

def algebra_generators(self): 

""" 

Return the algebra generators of ``self``. 

 

These form a family indexed by the ground set `X` of `M`. For 

each `x \in X`, the `x`-th element is `e_x`. 

 

EXAMPLES:: 

 

sage: M = matroids.Uniform(2, 2) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: OS.algebra_generators() 

Finite family {0: OS{0}, 1: OS{1}} 

 

sage: M = matroids.Uniform(1, 2) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: OS.algebra_generators() 

Finite family {0: OS{0}, 1: OS{0}} 

 

sage: M = matroids.Uniform(1, 3) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: OS.algebra_generators() 

Finite family {0: OS{0}, 1: OS{0}, 2: OS{0}} 

""" 

return Family(sorted(self._M.groundset()), 

lambda i: self.subset_image(frozenset([i]))) 

 

@cached_method 

def product_on_basis(self, a, b): 

""" 

Return the product in ``self`` of the basis elements 

indexed by ``a`` and ``b``. 

 

EXAMPLES:: 

 

sage: M = matroids.Wheel(3) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: OS.product_on_basis(frozenset([2]), frozenset([3,4])) 

OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4} 

 

:: 

 

sage: G = OS.algebra_generators() 

sage: prod(G) 

0 

sage: G[2] * G[4] 

-OS{1, 2} + OS{1, 4} 

sage: G[3] * G[4] * G[2] 

OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4} 

sage: G[2] * G[3] * G[4] 

OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4} 

sage: G[3] * G[2] * G[4] 

-OS{0, 1, 2} + OS{0, 1, 4} - OS{0, 2, 3} - OS{0, 3, 4} 

 

TESTS: 

 

Let us check that `e_{s_1} e_{s_2} \cdots e_{s_k} = e_S` for any 

subset `S = \{ s_1 < s_2 < \cdots < s_k \}` of the ground set:: 

 

sage: G = Graph([[1,2],[1,2],[2,3],[3,4],[4,2]], multiedges=True) 

sage: M = Matroid(G).regular_matroid() 

sage: E = M.groundset_list() 

sage: OS = M.orlik_solomon_algebra(ZZ) 

sage: G = OS.algebra_generators() 

sage: import itertools 

sage: def test_prod(F): 

....: LHS = OS.subset_image(frozenset(F)) 

....: RHS = OS.prod([G[i] for i in sorted(F)]) 

....: return LHS == RHS 

sage: all( test_prod(F) for k in range(len(E)+1) 

....: for F in itertools.combinations(E, k) ) 

True 

""" 

if not a: 

return self.basis()[b] 

if not b: 

return self.basis()[a] 

 

if not a.isdisjoint(b): 

return self.zero() 

 

R = self.base_ring() 

# since a is disjoint from b, we can just multiply the generator 

if len(a) == 1: 

i = list(a)[0] 

# insert i into nbc, keeping track of sign in coeff 

ns = b.union({i}) 

ns_sorted = sorted(ns, key=lambda x: self._sorting[x]) 

coeff = (-1)**ns_sorted.index(i) 

 

return R(coeff) * self.subset_image(ns) 

 

# r is the accumulator 

# we reverse a in the product, so add a sign 

# note that l>=2 here 

if len(a) % 4 < 2: 

sign = R.one() 

else: 

sign = - R.one() 

r = self._from_dict({b: sign}, remove_zeros=False) 

 

# now do the multiplication generator by generator 

G = self.algebra_generators() 

for i in sorted(a, key=lambda x: self._sorting[x]): 

r = G[i] * r 

 

return r 

 

@cached_method 

def subset_image(self, S): 

""" 

Return the element `e_S` of `A(M)` (``== self``) corresponding to 

a subset `S` of the ground set of `M`. 

 

INPUT: 

 

- ``S`` -- a frozenset which is a subset of the ground set of `M` 

 

EXAMPLES:: 

 

sage: M = matroids.Wheel(3) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: BC = sorted(M.broken_circuits(), key=sorted) 

sage: for bc in BC: (sorted(bc), OS.subset_image(bc)) 

([1, 3], -OS{0, 1} + OS{0, 3}) 

([1, 4, 5], OS{0, 1, 4} - OS{0, 1, 5} - OS{0, 3, 4} + OS{0, 3, 5}) 

([2, 3, 4], OS{0, 1, 2} - OS{0, 1, 4} + OS{0, 2, 3} + OS{0, 3, 4}) 

([2, 3, 5], OS{0, 2, 3} + OS{0, 3, 5}) 

([2, 4], -OS{1, 2} + OS{1, 4}) 

([2, 5], -OS{0, 2} + OS{0, 5}) 

([4, 5], -OS{3, 4} + OS{3, 5}) 

 

sage: M4 = matroids.CompleteGraphic(4) 

sage: OS = M4.orlik_solomon_algebra(QQ) 

sage: OS.subset_image(frozenset({2,3,4})) 

OS{0, 2, 3} + OS{0, 3, 4} 

 

An example of a custom ordering:: 

 

sage: G = Graph([[3, 4], [4, 1], [1, 2], [2, 3], [3, 5], [5, 6], [6, 3]]) 

sage: M = Matroid(G) 

sage: s = [(5, 6), (1, 2), (3, 5), (2, 3), (1, 4), (3, 6), (3, 4)] 

sage: sorted([sorted(c) for c in M.circuits()]) 

[[(1, 2), (1, 4), (2, 3), (3, 4)], 

[(3, 5), (3, 6), (5, 6)]] 

sage: OS = M.orlik_solomon_algebra(QQ, ordering=s) 

sage: OS.subset_image(frozenset([])) 

OS{} 

sage: OS.subset_image(frozenset([(1,2),(3,4),(1,4),(2,3)])) 

0 

sage: OS.subset_image(frozenset([(2,3),(1,2),(3,4)])) 

OS{(1, 2), (2, 3), (3, 4)} 

sage: OS.subset_image(frozenset([(1,4),(3,4),(2,3),(3,6),(5,6)])) 

-OS{(1, 2), (1, 4), (2, 3), (3, 6), (5, 6)} 

+ OS{(1, 2), (1, 4), (3, 4), (3, 6), (5, 6)} 

- OS{(1, 2), (2, 3), (3, 4), (3, 6), (5, 6)} 

sage: OS.subset_image(frozenset([(1,4),(3,4),(2,3),(3,6),(3,5)])) 

OS{(1, 2), (1, 4), (2, 3), (3, 5), (5, 6)} 

- OS{(1, 2), (1, 4), (2, 3), (3, 6), (5, 6)} 

+ OS{(1, 2), (1, 4), (3, 4), (3, 5), (5, 6)} 

+ OS{(1, 2), (1, 4), (3, 4), (3, 6), (5, 6)} 

- OS{(1, 2), (2, 3), (3, 4), (3, 5), (5, 6)} 

- OS{(1, 2), (2, 3), (3, 4), (3, 6), (5, 6)} 

 

TESTS:: 

 

sage: G = Graph([[1,2],[1,2],[2,3],[2,3],[1,3],[1,3]], multiedges=True) 

sage: M = Matroid(G) 

sage: sorted([sorted(c) for c in M.circuits()]) 

[[0, 1], [0, 2, 4], [0, 2, 5], [0, 3, 4], 

[0, 3, 5], [1, 2, 4], [1, 2, 5], [1, 3, 4], 

[1, 3, 5], [2, 3], [4, 5]] 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: OS.subset_image(frozenset([])) 

OS{} 

sage: OS.subset_image(frozenset([1, 2, 3])) 

0 

sage: OS.subset_image(frozenset([1, 3, 5])) 

0 

sage: OS.subset_image(frozenset([1, 2])) 

OS{0, 2} 

sage: OS.subset_image(frozenset([3, 4])) 

-OS{0, 2} + OS{0, 4} 

sage: OS.subset_image(frozenset([1, 5])) 

OS{0, 4} 

 

sage: G = Graph([[1,2],[1,2],[2,3],[3,4],[4,2]], multiedges=True) 

sage: M = Matroid(G) 

sage: sorted([sorted(c) for c in M.circuits()]) 

[[0, 1], [2, 3, 4]] 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: OS.subset_image(frozenset([])) 

OS{} 

sage: OS.subset_image(frozenset([1, 3, 4])) 

-OS{0, 2, 3} + OS{0, 2, 4} 

 

We check on a non-standard ordering:: 

 

sage: M = matroids.Wheel(3) 

sage: o = [5,4,3,2,1,0] 

sage: OS = M.orlik_solomon_algebra(QQ, ordering=o) 

sage: BC = sorted(M.broken_circuits(ordering=o), key=sorted) 

sage: for bc in BC: (sorted(bc), OS.subset_image(bc)) 

([0, 1], OS{0, 3} - OS{1, 3}) 

([0, 1, 4], OS{0, 3, 5} - OS{0, 4, 5} - OS{1, 3, 5} + OS{1, 4, 5}) 

([0, 2], OS{0, 5} - OS{2, 5}) 

([0, 2, 3], -OS{0, 3, 5} + OS{2, 3, 5}) 

([1, 2], OS{1, 4} - OS{2, 4}) 

([1, 2, 3], -OS{1, 3, 5} + OS{1, 4, 5} + OS{2, 3, 5} - OS{2, 4, 5}) 

([3, 4], OS{3, 5} - OS{4, 5}) 

""" 

if not isinstance(S, frozenset): 

raise ValueError("S needs to be a frozenset") 

for bc in self._broken_circuits: 

if bc.issubset(S): 

i = self._broken_circuits[bc] 

if i in S: 

# ``S`` contains not just a broken circuit, but an 

# actual circuit; then `e_S = 0`. 

return self.zero() 

coeff = self.base_ring().one() 

# Now, reduce ``S``, and build the result ``r``: 

r = self.zero() 

switch = False 

Si = S.union({i}) 

Ss = sorted(Si, key=lambda x: self._sorting[x]) 

for j in Ss: 

if j in bc: 

r += coeff * self.subset_image(Si.difference({j})) 

if switch: 

coeff *= -1 

if j == i: 

switch = True 

return r 

else: # So ``S`` is an NBC set. 

return self.monomial(S) 

 

def degree_on_basis(self, m): 

""" 

Return the degree of the basis element indexed by ``m``. 

 

EXAMPLES:: 

 

sage: M = matroids.Wheel(3) 

sage: OS = M.orlik_solomon_algebra(QQ) 

sage: OS.degree_on_basis(frozenset([1])) 

1 

sage: OS.degree_on_basis(frozenset([0, 2, 3])) 

3 

""" 

return len(m)