Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

""" 

Miscellaneous functions for the Steenrod algebra and its elements 

 

AUTHORS: 

 

- John H. Palmieri (2008-07-30): initial version (as the file 

steenrod_algebra_element.py) 

 

- John H. Palmieri (2010-06-30): initial version of steenrod_misc.py. 

Implemented profile functions. Moved most of the methods for 

elements to the ``Element`` subclass of 

:class:`sage.algebras.steenrod.steenrod_algebra.SteenrodAlgebra_generic`. 

 

The main functions here are 

 

- :func:`get_basis_name`. This function takes a string as input and 

attempts to interpret it as the name of a basis for the Steenrod 

algebra; it returns the canonical name attached to that basis. This 

allows for the use of synonyms when defining bases, while the 

resulting algebras will be identical. 

 

- :func:`normalize_profile`. This function returns the canonical (and 

hashable) description of any profile function. See 

:mod:`sage.algebras.steenrod.steenrod_algebra` and 

:func:`SteenrodAlgebra <sage.algebras.steenrod.steenrod_algebra.SteenrodAlgebra>` 

for information on profile functions. 

 

- functions named ``*_mono_to_string`` where ``*`` is a basis name 

(:func:`milnor_mono_to_string`, etc.). These convert tuples 

representing basis elements to strings, for _repr_ and _latex_ 

methods. 

""" 

 

#***************************************************************************** 

# Copyright (C) 2008-2010 John H. Palmieri <palmieri@math.washington.edu> 

# Distributed under the terms of the GNU General Public License (GPL) 

#***************************************************************************** 

 

###################################################### 

# basis names 

 

_steenrod_milnor_basis_names = ['milnor'] 

_steenrod_serre_cartan_basis_names = ['serre_cartan', 'serre-cartan', 'sc', 

'adem', 'admissible'] 

 

def get_basis_name(basis, p, generic=None): 

""" 

Return canonical basis named by string basis at the prime p. 

 

INPUT: 

 

- ``basis`` - string 

 

- ``p`` - positive prime number 

 

- ``generic`` - boolean, optional, default to 'None' 

 

OUTPUT: 

 

- ``basis_name`` - string 

 

Specify the names of the implemented bases. The input is 

converted to lower-case, then processed to return the canonical 

name for the basis. 

 

For the Milnor and Serre-Cartan bases, use the list of synonyms 

defined by the variables :data:`_steenrod_milnor_basis_names` and 

:data:`_steenrod_serre_cartan_basis_names`. Their canonical names 

are 'milnor' and 'serre-cartan', respectively. 

 

For the other bases, use pattern-matching rather than a list of 

synonyms: 

 

- Search for 'wood' and 'y' or 'wood' and 'z' to get the Wood 

bases. Canonical names 'woody', 'woodz'. 

 

- Search for 'arnon' and 'c' for the Arnon C basis. Canonical 

name: 'arnonc'. 

 

- Search for 'arnon' (and no 'c') for the Arnon A basis. Also see 

if 'long' is present, for the long form of the basis. Canonical 

names: 'arnona', 'arnona_long'. 

 

- Search for 'wall' for the Wall basis. Also see if 'long' is 

present. Canonical names: 'wall', 'wall_long'. 

 

- Search for 'pst' for P^s_t bases, then search for the order 

type: 'rlex', 'llex', 'deg', 'revz'. Canonical names: 

'pst_rlex', 'pst_llex', 'pst_deg', 'pst_revz'. 

 

- For commutator types, search for 'comm', an order type, and also 

check to see if 'long' is present. Canonical names: 

'comm_rlex', 'comm_llex', 'comm_deg', 'comm_revz', 

'comm_rlex_long', 'comm_llex_long', 'comm_deg_long', 

'comm_revz_long'. 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import get_basis_name 

sage: get_basis_name('adem', 2) 

'serre-cartan' 

sage: get_basis_name('milnor', 2) 

'milnor' 

sage: get_basis_name('MiLNoR', 5) 

'milnor' 

sage: get_basis_name('pst-llex', 2) 

'pst_llex' 

sage: get_basis_name('wood_abcdedfg_y', 2) 

'woody' 

sage: get_basis_name('wood', 2) 

Traceback (most recent call last): 

... 

ValueError: wood is not a recognized basis at the prime 2. 

sage: get_basis_name('arnon--hello--long', 2) 

'arnona_long' 

sage: get_basis_name('arnona_long', p=5) 

Traceback (most recent call last): 

... 

ValueError: arnona_long is not a recognized basis at the prime 5. 

sage: get_basis_name('NOT_A_BASIS', 2) 

Traceback (most recent call last): 

... 

ValueError: not_a_basis is not a recognized basis at the prime 2. 

sage: get_basis_name('woody', 2, generic=True) 

Traceback (most recent call last): 

... 

ValueError: woody is not a recognized basis for the generic Steenrod algebra at the prime 2. 

""" 

if generic is None: 

generic = False if p==2 else True 

basis = basis.lower() 

if basis in _steenrod_milnor_basis_names: 

result = 'milnor' 

elif basis in _steenrod_serre_cartan_basis_names: 

result = 'serre-cartan' 

elif basis.find('pst') >= 0: 

if basis.find('rlex') >= 0: 

result = 'pst_rlex' 

elif basis.find('llex') >= 0: 

result = 'pst_llex' 

elif basis.find('deg') >= 0: 

result = 'pst_deg' 

elif basis.find('revz') >= 0: 

result = 'pst_revz' 

else: 

result = 'pst_revz' 

elif basis.find('comm') >= 0: 

if basis.find('rlex') >= 0: 

result = 'comm_rlex' 

elif basis.find('llex') >= 0: 

result = 'comm_llex' 

elif basis.find('deg') >= 0: 

result = 'comm_deg' 

elif basis.find('revz') >= 0: 

result = 'comm_revz' 

else: 

result = 'comm_revz' 

if basis.find('long') >= 0: 

result = result + '_long' 

elif not generic and basis.find('wood') >= 0: 

if basis.find('y') >= 0: 

result = 'woody' 

elif basis.find('z') >= 0: 

result = 'woodz' 

else: 

raise ValueError("%s is not a recognized basis at the prime %s." % (basis, p)) 

elif not generic and basis.find('arnon') >= 0: 

if basis.find('c') >= 0: 

result = 'arnonc' 

else: 

result = 'arnona' 

if basis.find('long') >= 0: 

result = result + '_long' 

elif not generic and basis.find('wall') >= 0: 

result = 'wall' 

if basis.find('long') >= 0: 

result = result + '_long' 

else: 

gencase = " for the generic Steenrod algebra" if p==2 and generic else "" 

raise ValueError("%s is not a recognized basis%s at the prime %s." % (basis, gencase, p)) 

return result 

 

###################################################### 

# profile functions 

 

def is_valid_profile(profile, truncation_type, p=2, generic=None): 

""" 

True if ``profile``, together with ``truncation_type``, is a valid 

profile at the prime `p`. 

 

INPUT: 

 

- ``profile`` - when `p=2`, a tuple or list of numbers; when `p` 

is odd, a pair of such lists 

 

- ``truncation_type`` - either 0 or `\infty` 

 

- `p` - prime number, optional, default 2 

 

- `generic` - boolean, optional, default None 

 

OUTPUT: True if the profile function is valid, False otherwise. 

 

See the documentation for :mod:`sage.algebras.steenrod.steenrod_algebra` 

for descriptions of profile functions and how they correspond to 

sub-Hopf algebras of the Steenrod algebra. Briefly: at the prime 

2, a profile function `e` is valid if it satisfies the condition 

 

- `e(r) \geq \min( e(r-i) - i, e(i))` for all `0 < i < r`. 

 

At odd primes, a pair of profile functions `e` and `k` are valid 

if they satisfy 

 

- `e(r) \geq \min( e(r-i) - i, e(i))` for all `0 < i < r`. 

 

- if `k(i+j) = 1`, then either `e(i) \leq j` or `k(j) = 1` for all 

`i \geq 1`, `j \geq 0`. 

 

In this function, profile functions are lists or tuples, and 

``truncation_type`` is appended as the last element of the list 

`e` before testing. 

 

EXAMPLES: 

 

`p=2`:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import is_valid_profile 

sage: is_valid_profile([3,2,1], 0) 

True 

sage: is_valid_profile([3,2,1], Infinity) 

True 

sage: is_valid_profile([1,2,3], 0) 

False 

sage: is_valid_profile([6,2,0], Infinity) 

False 

sage: is_valid_profile([0,3], 0) 

False 

sage: is_valid_profile([0,0,4], 0) 

False 

sage: is_valid_profile([0,0,0,4,0], 0) 

True 

 

Odd primes:: 

 

sage: is_valid_profile(([0,0,0], [2,1,1,1,2,2]), 0, p=3) 

True 

sage: is_valid_profile(([1], [2,2]), 0, p=3) 

True 

sage: is_valid_profile(([1], [2]), 0, p=7) 

False 

sage: is_valid_profile(([1,2,1], []), 0, p=7) 

True 

sage: is_valid_profile(([0,0,0], [2,1,1,1,2,2]), 0, p=2, generic=True) 

True 

""" 

from sage.rings.infinity import Infinity 

if generic is None: 

generic = False if p==2 else True 

if not generic: 

pro = list(profile) + [truncation_type]*len(profile) 

r = 0 

for pro_r in pro: 

r += 1 # index of pro_r 

if pro_r < Infinity: 

for i in range(1,r): 

if pro_r < min(pro[r-i-1] - i, pro[i-1]): 

return False 

else: 

# p odd: 

e = list(profile[0]) + [truncation_type]*len(profile[0]) 

k = list(profile[1]) 

if not set(k).issubset(set([1,2])): 

return False 

if truncation_type > 0: 

k = k + [2] 

else: 

k = k + [1]*len(profile[0]) 

if len(k) > len(e): 

e = e + [truncation_type] * (len(k) - len(e)) 

r = 0 

for e_r in e: 

r += 1 # index of e_r 

if e_r < Infinity: 

for i in range(1,r): 

if e_r < min(e[r-i-1] - i, e[i-1]): 

return False 

r = -1 

for k_r in k: 

r += 1 # index of k_r 

if k_r == 1: 

for j in range(r): 

i = r-j 

if e[i-1] > j and k[j] == 2: 

return False 

return True 

 

def normalize_profile(profile, precision=None, truncation_type='auto', p=2, generic=None): 

""" 

Given a profile function and related data, return it in a standard form, 

suitable for hashing and caching as data defining a sub-Hopf 

algebra of the Steenrod algebra. 

 

INPUT: 

 

- ``profile`` - a profile function in form specified below 

- ``precision`` - integer or ``None``, optional, default ``None`` 

- ``truncation_type`` - 0 or `\infty` or 'auto', optional, default 'auto' 

- `p` - prime, optional, default 2 

- `generic` - boolean, optional, default ``None`` 

 

OUTPUT: a triple ``profile, precision, truncation_type``, in 

standard form as described below. 

 

The "standard form" is as follows: ``profile`` should be a tuple 

of integers (or `\infty`) with no trailing zeroes when `p=2`, or a 

pair of such when `p` is odd or `generic` is ``True``. ``precision`` 

should be a positive integer. ``truncation_type`` should be 0 or `\infty`. 

Furthermore, this must be a valid profile, as determined by the 

function :func:`is_valid_profile`. See also the documentation for 

the module :mod:`sage.algebras.steenrod.steenrod_algebra` for information 

about profile functions. 

 

For the inputs: when `p=2`, ``profile`` should be a valid profile 

function, and it may be entered in any of the following forms: 

 

- a list or tuple, e.g., ``[3,2,1,1]`` 

- a function from positive integers to non-negative integers (and 

`\infty`), e.g., ``lambda n: n+2``. This corresponds to the 

list ``[3, 4, 5, ...]``. 

- ``None`` or ``Infinity`` - use this for the profile function for 

the whole Steenrod algebra. This corresponds to the list 

``[Infinity, Infinity, Infinity, ...]`` 

 

To make this hashable, it gets turned into a tuple. In the first 

case it is clear how to do this; also in this case, ``precision`` 

is set to be one more than the length of this tuple. In the 

second case, construct a tuple of length one less than 

``precision`` (default value 100). In the last case, the empty 

tuple is returned and ``precision`` is set to 1. 

 

Once a sub-Hopf algebra of the Steenrod algebra has been defined 

using such a profile function, if the code requires any remaining 

terms (say, terms after the 100th), then they are given by 

``truncation_type`` if that is 0 or `\infty`. If 

``truncation_type`` is 'auto', then in the case of a tuple, it 

gets set to 0, while for the other cases it gets set to `\infty`. 

 

See the examples below. 

 

When `p` is odd, ``profile`` is a pair of "functions", so it may 

have the following forms: 

 

- a pair of lists or tuples, the second of which takes values in 

the set `\{1,2\}`, e.g., ``([3,2,1,1], [1,1,2,2,1])``. 

 

- a pair of functions, one (called `e`) from positive integers to 

non-negative integers (and `\infty`), one (called `k`) from 

non-negative integers to the set `\{1,2\}`, e.g., 

``(lambda n: n+2, lambda n: 1)``. This corresponds to the 

pair ``([3, 4, 5, ...], [1, 1, 1, ...])``. 

 

- ``None`` or ``Infinity`` - use this for the profile function for 

the whole Steenrod algebra. This corresponds to the pair 

``([Infinity, Infinity, Infinity, ...], [2, 2, 2, ...])``. 

 

You can also mix and match the first two, passing a pair with 

first entry a list and second entry a function, for instance. The 

values of ``precision`` and ``truncation_type`` are determined by 

the first entry. 

 

EXAMPLES: 

 

`p=2`:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import normalize_profile 

sage: normalize_profile([1,2,1,0,0]) 

((1, 2, 1), 0) 

 

The full mod 2 Steenrod algebra:: 

 

sage: normalize_profile(Infinity) 

((), +Infinity) 

sage: normalize_profile(None) 

((), +Infinity) 

sage: normalize_profile(lambda n: Infinity) 

((), +Infinity) 

 

The ``precision`` argument has no effect when the first argument 

is a list or tuple:: 

 

sage: normalize_profile([1,2,1,0,0], precision=12) 

((1, 2, 1), 0) 

 

If the first argument is a function, then construct a list of 

length one less than ``precision``, by plugging in the numbers 1, 

2, ..., ``precision`` - 1:: 

 

sage: normalize_profile(lambda n: 4-n, precision=4) 

((3, 2, 1), +Infinity) 

sage: normalize_profile(lambda n: 4-n, precision=4, truncation_type=0) 

((3, 2, 1), 0) 

 

Negative numbers in profile functions are turned into zeroes:: 

 

sage: normalize_profile(lambda n: 4-n, precision=6) 

((3, 2, 1, 0, 0), +Infinity) 

 

If it doesn't give a valid profile, an error is raised:: 

 

sage: normalize_profile(lambda n: 3, precision=4, truncation_type=0) 

Traceback (most recent call last): 

... 

ValueError: Invalid profile 

sage: normalize_profile(lambda n: 3, precision=4, truncation_type = Infinity) 

((3, 3, 3), +Infinity) 

 

When `p` is odd, the behavior is similar:: 

 

sage: normalize_profile(([2,1], [2,2,2]), p=13) 

(((2, 1), (2, 2, 2)), 0) 

 

The full mod `p` Steenrod algebra:: 

 

sage: normalize_profile(None, p=7) 

(((), ()), +Infinity) 

sage: normalize_profile(Infinity, p=11) 

(((), ()), +Infinity) 

sage: normalize_profile((lambda n: Infinity, lambda n: 2), p=17) 

(((), ()), +Infinity) 

 

Note that as at the prime 2, the ``precision`` argument has no 

effect on a list or tuple in either entry of ``profile``. If 

``truncation_type`` is 'auto', then it gets converted to either 

``0`` or ``+Infinity`` depending on the *first* entry of 

``profile``:: 

 

sage: normalize_profile(([2,1], [2,2,2]), precision=84, p=13) 

(((2, 1), (2, 2, 2)), 0) 

sage: normalize_profile((lambda n: 0, lambda n: 2), precision=4, p=11) 

(((0, 0, 0), ()), +Infinity) 

sage: normalize_profile((lambda n: 0, (1,1,1,1,1,1,1)), precision=4, p=11) 

(((0, 0, 0), (1, 1, 1, 1, 1, 1, 1)), +Infinity) 

sage: normalize_profile(((4,3,2,1), lambda n: 2), precision=6, p=11) 

(((4, 3, 2, 1), (2, 2, 2, 2, 2)), 0) 

sage: normalize_profile(((4,3,2,1), lambda n: 1), precision=3, p=11, truncation_type=Infinity) 

(((4, 3, 2, 1), (1, 1)), +Infinity) 

 

As at the prime 2, negative numbers in the first component are 

converted to zeroes. Numbers in the second component must be 

either 1 and 2, or else an error is raised:: 

 

sage: normalize_profile((lambda n: -n, lambda n: 1), precision=4, p=11) 

(((0, 0, 0), (1, 1, 1)), +Infinity) 

sage: normalize_profile([[0,0,0], [1,2,3,2,1]], p=11) 

Traceback (most recent call last): 

... 

ValueError: Invalid profile 

""" 

from inspect import isfunction 

from sage.rings.infinity import Infinity 

if truncation_type == 'zero': 

truncation_type = 0 

if truncation_type == 'infinity': 

truncation_type = Infinity 

if generic is None: 

generic = False if p==2 else True 

if not generic: 

if profile is None or profile == Infinity: 

# no specified profile or infinite profile: return profile 

# for the entire Steenrod algebra 

new_profile = () 

truncation_type = Infinity 

elif isinstance(profile, (list, tuple)): 

# profile is a list or tuple: use it as is. if 

# truncation_type not specified, set it to 'zero'. remove 

# trailing zeroes if truncation_type is 'auto' or 'zero'. 

if truncation_type == 'auto': 

truncation_type = 0 

# remove trailing zeroes or Infinitys 

while len(profile) > 0 and profile[-1] == truncation_type: 

profile = profile[:-1] 

new_profile = tuple(profile) 

elif isfunction(profile): 

# profile is a function: turn it into a tuple. if 

# truncation_type not specified, set it to 'infinity' if 

# the function is ever infinite; otherwise set it to 

# 0. remove trailing zeroes if truncation_type is 

# 0, trailing Infinitys if truncation_type is oo. 

if precision is None: 

precision = 100 

if truncation_type == 'auto': 

truncation_type = Infinity 

new_profile = [max(0, profile(i)) for i in range(1, precision)] 

# remove trailing zeroes or Infinitys: 

while len(new_profile) > 0 and new_profile[-1] == truncation_type: 

del new_profile[-1] 

new_profile = tuple(new_profile) 

if is_valid_profile(new_profile, truncation_type, p): 

return new_profile, truncation_type 

else: 

raise ValueError("Invalid profile") 

else: # p odd 

if profile is None or profile == Infinity: 

# no specified profile or infinite profile: return profile 

# for the entire Steenrod algebra 

new_profile = ((), ()) 

truncation_type = Infinity 

else: # profile should be a list or tuple of length 2 

assert isinstance(profile, (list, tuple)) and len(profile) == 2, \ 

"Invalid form for profile" 

e = profile[0] 

k = profile[1] 

if isinstance(e, (list, tuple)): 

# e is a list or tuple: use it as is. if 

# truncation_type not specified, set it to 0. remove 

# appropriate trailing terms. 

if truncation_type == 'auto': 

truncation_type = 0 

# remove trailing terms 

while len(e) > 0 and e[-1] == truncation_type: 

e = e[:-1] 

e = tuple(e) 

elif isfunction(e): 

# e is a function: turn it into a tuple. if 

# truncation_type not specified, set it to 'infinity' 

# if the function is ever infinite; otherwise set it 

# to 0. remove appropriate trailing terms. 

if precision is None: 

e_precision = 100 

else: 

e_precision = precision 

if truncation_type == 'auto': 

truncation_type = Infinity 

e = [max(0, e(i)) for i in range(1, e_precision)] 

# remove trailing terms 

while len(e) > 0 and e[-1] == truncation_type: 

del e[-1] 

e = tuple(e) 

if isinstance(k, (list, tuple)): 

# k is a list or tuple: use it as is. 

k = tuple(k) 

elif isfunction(k): 

# k is a function: turn it into a tuple. 

if precision is None: 

k_precision = 100 

else: 

k_precision = precision 

k = tuple([k(i) for i in range(k_precision-1)]) 

# Remove trailing ones from k if truncation_type is 'zero', 

# remove trailing twos if truncation_type is 'Infinity'. 

if truncation_type == 0: 

while len(k) > 0 and k[-1] == 1: 

k = k[:-1] 

else: 

while len(k) > 0 and k[-1] == 2: 

k = k[:-1] 

new_profile = (e, k) 

if is_valid_profile(new_profile, truncation_type, p, generic=True): 

return new_profile, truncation_type 

else: 

raise ValueError("Invalid profile") 

 

###################################################### 

# string representations for elements 

 

def milnor_mono_to_string(mono, latex=False, generic=False): 

""" 

String representation of element of the Milnor basis. 

 

This is used by the _repr_ and _latex_ methods. 

 

INPUT: 

 

- ``mono`` - if `generic=False`, tuple of non-negative integers (a,b,c,...); 

if `generic=True`, pair of tuples of non-negative integers ((e0, e1, e2, 

...), (r1, r2, ...)) 

 

- ``latex`` - boolean (optional, default False), if true, output 

LaTeX string 

 

- ``generic`` - whether to format generically, or for the prime 2 (default) 

 

OUTPUT: ``rep`` - string 

 

This returns a string like ``Sq(a,b,c,...)`` when `generic=False`, or a string 

like ``Q_e0 Q_e1 Q_e2 ... P(r1, r2, ...)`` when `generic=True`. 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import milnor_mono_to_string 

sage: milnor_mono_to_string((1,2,3,4)) 

'Sq(1,2,3,4)' 

sage: milnor_mono_to_string((1,2,3,4),latex=True) 

'\\text{Sq}(1,2,3,4)' 

sage: milnor_mono_to_string(((1,0), (2,3,1)), generic=True) 

'Q_{1} Q_{0} P(2,3,1)' 

sage: milnor_mono_to_string(((1,0), (2,3,1)), latex=True, generic=True) 

'Q_{1} Q_{0} \\mathcal{P}(2,3,1)' 

 

The empty tuple represents the unit element:: 

 

sage: milnor_mono_to_string(()) 

'1' 

sage: milnor_mono_to_string((), generic=True) 

'1' 

""" 

if latex: 

if not generic: 

sq = "\\text{Sq}" 

P = "\\text{Sq}" 

else: 

P = "\\mathcal{P}" 

else: 

if not generic: 

sq = "Sq" 

P = "Sq" 

else: 

P = "P" 

if mono == () or mono == (0,) or (generic and len(mono[0]) + len(mono[1]) == 0): 

return "1" 

else: 

if not generic: 

string = sq + "(" + str(mono[0]) 

for n in mono[1:]: 

string = string + "," + str(n) 

string = string + ")" 

else: 

string = "" 

if len(mono[0]) > 0: 

for e in mono[0]: 

string = string + "Q_{" + str(e) + "} " 

if len(mono[1]) > 0: 

string = string + P + "(" + str(mono[1][0]) 

for n in mono[1][1:]: 

string = string + "," + str(n) 

string = string + ")" 

return string.strip(" ") 

 

def serre_cartan_mono_to_string(mono, latex=False, generic=False): 

r""" 

String representation of element of the Serre-Cartan basis. 

 

This is used by the _repr_ and _latex_ methods. 

 

INPUT: 

 

- ``mono`` - tuple of positive integers (a,b,c,...) when `generic=False`, 

or tuple (e0, n1, e1, n2, ...) when `generic=True`, where each ei is 0 or 

1, and each ni is positive 

 

- ``latex`` - boolean (optional, default False), if true, output 

LaTeX string 

 

- ``generic`` - whether to format generically, or for the prime 2 (default) 

 

OUTPUT: ``rep`` - string 

 

This returns a string like ``Sq^{a} Sq^{b} Sq^{c} ...`` when 

`generic=False`, or a string like 

``\beta^{e0} P^{n1} \beta^{e1} P^{n2} ...`` when `generic=True`. 

is odd. 

 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import serre_cartan_mono_to_string 

sage: serre_cartan_mono_to_string((1,2,3,4)) 

'Sq^{1} Sq^{2} Sq^{3} Sq^{4}' 

sage: serre_cartan_mono_to_string((1,2,3,4),latex=True) 

'\\text{Sq}^{1} \\text{Sq}^{2} \\text{Sq}^{3} \\text{Sq}^{4}' 

sage: serre_cartan_mono_to_string((0,5,1,1,0), generic=True) 

'P^{5} beta P^{1}' 

sage: serre_cartan_mono_to_string((0,5,1,1,0), generic=True, latex=True) 

'\\mathcal{P}^{5} \\beta \\mathcal{P}^{1}' 

 

The empty tuple represents the unit element 1:: 

 

sage: serre_cartan_mono_to_string(()) 

'1' 

sage: serre_cartan_mono_to_string((), generic=True) 

'1' 

""" 

if latex: 

if not generic: 

sq = "\\text{Sq}" 

P = "\\text{Sq}" 

else: 

P = "\\mathcal{P}" 

else: 

if not generic: 

sq = "Sq" 

P = "Sq" 

else: 

P = "P" 

if len(mono) == 0 or mono == (0,): 

return "1" 

else: 

if not generic: 

string = "" 

for n in mono: 

string = string + sq + "^{" + str(n) + "} " 

else: 

string = "" 

index = 0 

for n in mono: 

from sage.misc.functional import is_even 

if is_even(index): 

if n == 1: 

if latex: 

string = string + "\\beta " 

else: 

string = string + "beta " 

else: 

string = string + P + "^{" + str(n) + "} " 

index += 1 

return string.strip(" ") 

 

def wood_mono_to_string(mono, latex=False): 

""" 

String representation of element of Wood's Y and Z bases. 

 

This is used by the _repr_ and _latex_ methods. 

 

INPUT: 

 

- ``mono`` - tuple of pairs of non-negative integers (s,t) 

 

- ``latex`` - boolean (optional, default False), if true, output 

LaTeX string 

 

OUTPUT: ``string`` - concatenation of strings of the form 

``Sq^{2^s (2^{t+1}-1)}`` for each pair (s,t) 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import wood_mono_to_string 

sage: wood_mono_to_string(((1,2),(3,0))) 

'Sq^{14} Sq^{8}' 

sage: wood_mono_to_string(((1,2),(3,0)),latex=True) 

'\\text{Sq}^{14} \\text{Sq}^{8}' 

 

The empty tuple represents the unit element:: 

 

sage: wood_mono_to_string(()) 

'1' 

""" 

if latex: 

sq = "\\text{Sq}" 

else: 

sq = "Sq" 

if len(mono) == 0: 

return "1" 

else: 

string = "" 

for (s,t) in mono: 

string = string + sq + "^{" + \ 

str(2**s * (2**(t+1)-1)) + "} " 

return string.strip(" ") 

 

def wall_mono_to_string(mono, latex=False): 

""" 

String representation of element of Wall's basis. 

 

This is used by the _repr_ and _latex_ methods. 

 

INPUT: 

 

- ``mono`` - tuple of pairs of non-negative integers (m,k) with `m 

>= k` 

 

- ``latex`` - boolean (optional, default False), if true, output 

LaTeX string 

 

OUTPUT: ``string`` - concatenation of strings ``Q^{m}_{k}`` for 

each pair (m,k) 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import wall_mono_to_string 

sage: wall_mono_to_string(((1,2),(3,0))) 

'Q^{1}_{2} Q^{3}_{0}' 

sage: wall_mono_to_string(((1,2),(3,0)),latex=True) 

'Q^{1}_{2} Q^{3}_{0}' 

 

The empty tuple represents the unit element:: 

 

sage: wall_mono_to_string(()) 

'1' 

""" 

if len(mono) == 0: 

return "1" 

else: 

string = "" 

for (m,k) in mono: 

string = string + "Q^{" + str(m) + "}_{" \ 

+ str(k) + "} " 

return string.strip(" ") 

 

def wall_long_mono_to_string(mono, latex=False): 

""" 

Alternate string representation of element of Wall's basis. 

 

This is used by the _repr_ and _latex_ methods. 

 

INPUT: 

 

- ``mono`` - tuple of pairs of non-negative integers (m,k) with `m 

>= k` 

 

- ``latex`` - boolean (optional, default False), if true, output 

LaTeX string 

 

OUTPUT: ``string`` - concatenation of strings of the form 

``Sq^(2^m)`` 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import wall_long_mono_to_string 

sage: wall_long_mono_to_string(((1,2),(3,0))) 

'Sq^{1} Sq^{2} Sq^{4} Sq^{8}' 

sage: wall_long_mono_to_string(((1,2),(3,0)),latex=True) 

'\\text{Sq}^{1} \\text{Sq}^{2} \\text{Sq}^{4} \\text{Sq}^{8}' 

 

The empty tuple represents the unit element:: 

 

sage: wall_long_mono_to_string(()) 

'1' 

""" 

if latex: 

sq = "\\text{Sq}" 

else: 

sq = "Sq" 

if len(mono) == 0: 

return "1" 

else: 

string = "" 

for (m,k) in mono: 

for i in range(k,m+1): 

string = string + sq + "^{" + str(2**i) + "} " 

return string.strip(" ") 

 

def arnonA_mono_to_string(mono, latex=False, p=2): 

""" 

String representation of element of Arnon's A basis. 

 

This is used by the _repr_ and _latex_ methods. 

 

INPUT: 

 

- ``mono`` - tuple of pairs of non-negative integers 

(m,k) with `m >= k` 

 

- ``latex`` - boolean (optional, default False), if true, output 

LaTeX string 

 

OUTPUT: ``string`` - concatenation of strings of the form 

``X^{m}_{k}`` for each pair (m,k) 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import arnonA_mono_to_string 

sage: arnonA_mono_to_string(((1,2),(3,0))) 

'X^{1}_{2} X^{3}_{0}' 

sage: arnonA_mono_to_string(((1,2),(3,0)),latex=True) 

'X^{1}_{2} X^{3}_{0}' 

 

The empty tuple represents the unit element:: 

 

sage: arnonA_mono_to_string(()) 

'1' 

""" 

if len(mono) == 0: 

return "1" 

else: 

string = "" 

for (m,k) in mono: 

string = string + "X^{" + str(m) + "}_{" \ 

+ str(k) + "} " 

return string.strip(" ") 

 

def arnonA_long_mono_to_string(mono, latex=False, p=2): 

""" 

Alternate string representation of element of Arnon's A basis. 

 

This is used by the _repr_ and _latex_ methods. 

 

INPUT: 

 

- ``mono`` - tuple of pairs of non-negative integers (m,k) with `m 

>= k` 

 

- ``latex`` - boolean (optional, default False), if true, output 

LaTeX string 

 

OUTPUT: ``string`` - concatenation of strings of the form 

``Sq(2^m)`` 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import arnonA_long_mono_to_string 

sage: arnonA_long_mono_to_string(((1,2),(3,0))) 

'Sq^{8} Sq^{4} Sq^{2} Sq^{1}' 

sage: arnonA_long_mono_to_string(((1,2),(3,0)),latex=True) 

'\\text{Sq}^{8} \\text{Sq}^{4} \\text{Sq}^{2} \\text{Sq}^{1}' 

 

The empty tuple represents the unit element:: 

 

sage: arnonA_long_mono_to_string(()) 

'1' 

""" 

if latex: 

sq = "\\text{Sq}" 

else: 

sq = "Sq" 

if len(mono) == 0: 

return "1" 

else: 

string = "" 

for (m,k) in mono: 

for i in range(m,k-1,-1): 

string = string + sq + "^{" + str(2**i) + "} " 

return string.strip(" ") 

 

def pst_mono_to_string(mono, latex=False, generic=False): 

r""" 

String representation of element of a `P^s_t`-basis. 

 

This is used by the _repr_ and _latex_ methods. 

 

INPUT: 

 

- ``mono`` - tuple of pairs of integers (s,t) with `s >= 0`, `t > 

0` 

 

- ``latex`` - boolean (optional, default False), if true, output 

LaTeX string 

 

- ``generic`` - whether to format generically, or for the prime 2 (default) 

 

OUTPUT: ``string`` - concatenation of strings of the form 

``P^{s}_{t}`` for each pair (s,t) 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import pst_mono_to_string 

sage: pst_mono_to_string(((1,2),(0,3)), generic=False) 

'P^{1}_{2} P^{0}_{3}' 

sage: pst_mono_to_string(((1,2),(0,3)),latex=True, generic=False) 

'P^{1}_{2} P^{0}_{3}' 

sage: pst_mono_to_string(((1,4), (((1,2), 1),((0,3), 2))), generic=True) 

'Q_{1} Q_{4} P^{1}_{2} (P^{0}_{3})^2' 

sage: pst_mono_to_string(((1,4), (((1,2), 1),((0,3), 2))), latex=True, generic=True) 

'Q_{1} Q_{4} P^{1}_{2} (P^{0}_{3})^{2}' 

 

The empty tuple represents the unit element:: 

 

sage: pst_mono_to_string(()) 

'1' 

""" 

if len(mono) == 0: 

return "1" 

else: 

string = "" 

if not generic: 

for (s,t) in mono: 

string = string + "P^{" + str(s) + "}_{" \ 

+ str(t) + "} " 

else: 

for e in mono[0]: 

string = string + "Q_{" + str(e) + "} " 

for ((s,t), n) in mono[1]: 

if n == 1: 

string = string + "P^{" + str(s) + "}_{" \ 

+ str(t) + "} " 

else: 

if latex: 

pow = "{%s}" % n 

else: 

pow = str(n) 

string = string + "(P^{" + str(s) + "}_{" \ 

+ str(t) + "})^" + pow + " " 

return string.strip(" ") 

 

def comm_mono_to_string(mono, latex=False, generic=False): 

r""" 

String representation of element of a commutator basis. 

 

This is used by the _repr_ and _latex_ methods. 

 

INPUT: 

 

- ``mono`` - tuple of pairs of integers (s,t) with `s >= 0`, `t > 

0` 

 

- ``latex`` - boolean (optional, default False), if true, output 

LaTeX string 

 

- ``generic`` - whether to format generically, or for the prime 2 (default) 

 

OUTPUT: ``string`` - concatenation of strings of the form 

``c_{s,t}`` for each pair (s,t) 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import comm_mono_to_string 

sage: comm_mono_to_string(((1,2),(0,3)), generic=False) 

'c_{1,2} c_{0,3}' 

sage: comm_mono_to_string(((1,2),(0,3)), latex=True) 

'c_{1,2} c_{0,3}' 

sage: comm_mono_to_string(((1, 4), (((1,2), 1),((0,3), 2))), generic=True) 

'Q_{1} Q_{4} c_{1,2} c_{0,3}^2' 

sage: comm_mono_to_string(((1, 4), (((1,2), 1),((0,3), 2))), latex=True, generic=True) 

'Q_{1} Q_{4} c_{1,2} c_{0,3}^{2}' 

 

The empty tuple represents the unit element:: 

 

sage: comm_mono_to_string(()) 

'1' 

""" 

if len(mono) == 0: 

return "1" 

else: 

string = "" 

if not generic: 

for (s,t) in mono: 

string = string + "c_{" + str(s) + "," \ 

+ str(t) + "} " 

else: 

for e in mono[0]: 

string = string + "Q_{" + str(e) + "} " 

for ((s,t), n) in mono[1]: 

string = string + "c_{" + str(s) + "," \ 

+ str(t) + "}" 

if n > 1: 

if latex: 

pow = "^{%s}" % n 

else: 

pow = "^%s" % n 

string = string + pow 

string = string + " " 

return string.strip(" ") 

 

def comm_long_mono_to_string(mono, p, latex=False, generic=False): 

r""" 

Alternate string representation of element of a commutator basis. 

 

Okay in low dimensions, but gets unwieldy as the dimension 

increases. 

 

INPUT: 

 

- ``mono`` - tuple of pairs of integers (s,t) with `s >= 0`, `t > 

0` 

 

- ``latex`` - boolean (optional, default False), if true, output 

LaTeX string 

 

- ``generic`` - whether to format generically, or for the prime 2 (default) 

 

OUTPUT: ``string`` - concatenation of strings of the form ``s_{2^s 

... 2^(s+t-1)}`` for each pair (s,t) 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_misc import comm_long_mono_to_string 

sage: comm_long_mono_to_string(((1,2),(0,3)), 2) 

's_{24} s_{124}' 

sage: comm_long_mono_to_string(((1,2),(0,3)), 2, latex=True) 

's_{24} s_{124}' 

sage: comm_long_mono_to_string(((1, 4), (((1,2), 1),((0,3), 2))), 5, generic=True) 

'Q_{1} Q_{4} s_{5,25} s_{1,5,25}^2' 

sage: comm_long_mono_to_string(((1, 4), (((1,2), 1),((0,3), 2))), 3, latex=True, generic=True) 

'Q_{1} Q_{4} s_{3,9} s_{1,3,9}^{2}' 

 

The empty tuple represents the unit element:: 

 

sage: comm_long_mono_to_string((), p=2) 

'1' 

""" 

if len(mono) == 0: 

return "1" 

else: 

string = "" 

if not generic: 

for (s,t) in mono: 

if s + t > 4: 

comma = "," 

else: 

comma = "" 

string = string + "s_{" 

for i in range(t): 

string = string + str(2**(s+i)) + comma 

string = string.strip(",") + "} " 

else: 

for e in mono[0]: 

string = string + "Q_{" + str(e) + "} " 

for ((s,t), n) in mono[1]: 

string = string + "s_{" 

for i in range(t): 

string = string + str(p**(s+i)) + "," 

string = string.strip(",") + "}" 

if n > 1: 

if latex: 

pow = "^{%s}" % n 

else: 

pow = "^%s" % n 

string = string + pow 

string = string + " " 

return string.strip(" ") 

 

# miscellany: 

 

def convert_perm(m): 

""" 

Convert tuple m of non-negative integers to a permutation in 

one-line form. 

 

INPUT: 

 

- ``m`` - tuple of non-negative integers with no repetitions 

 

OUTPUT: ``list`` - conversion of ``m`` to a permutation of the set 

1,2,...,len(m) 

 

If ``m=(3,7,4)``, then one can view ``m`` as representing the 

permutation of the set `(3,4,7)` sending 3 to 3, 4 to 7, and 7 to 

4. This function converts ``m`` to the list ``[1,3,2]``, which 

represents essentially the same permutation, but of the set 

`(1,2,3)`. This list can then be passed to :func:`Permutation 

<sage.combinat.permutation.Permutation>`, and its signature can be 

computed. 

 

EXAMPLES:: 

 

sage: sage.algebras.steenrod.steenrod_algebra_misc.convert_perm((3,7,4)) 

[1, 3, 2] 

sage: sage.algebras.steenrod.steenrod_algebra_misc.convert_perm((5,0,6,3)) 

[3, 1, 4, 2] 

""" 

m2 = sorted(m) 

return [list(m2).index(x)+1 for x in m]