Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

r""" 

Multiplication for elements of the Steenrod algebra 

 

AUTHORS: 

 

- John H. Palmieri (2008-07-30: version 0.9) initial version: Milnor 

multiplication. 

- John H. Palmieri (2010-06-30: version 1.0) multiplication of 

Serre-Cartan basis elements using the Adem relations. 

- Simon King (2011-10-25): Fix the use of cached functions. 

 

.. rubric:: Milnor multiplication, `p=2` 

 

See Milnor's paper [Mil1958]_ for proofs, etc. 

 

To multiply Milnor basis elements $\text{Sq}(r_1, r_2, ...)$ and 

$\text{Sq}(s_1, s_2,...)$ at the prime 2, form all possible matrices 

$M$ with rows and columns indexed starting at 0, with position (0,0) 

deleted (or ignored), with $s_i$ equal to the sum of column $i$ for 

each $i$, and with $r_j$ equal to the 'weighted' sum of row $j$. The 

weights are as follows: elements from column $i$ are multiplied by 

$2^i$. For example, to multiply $\text{Sq}(2)$ and $\text{Sq}(1,1)$, 

form the matrices 

 

.. MATH:: 

 

\begin{Vmatrix} 

* & 1 & 1 \\ 

2 & 0 & 0 

\end{Vmatrix} 

\quad \text{and} \quad 

\begin{Vmatrix} 

* & 0 & 1 \\ 

0 & 1 & 0 

\end{Vmatrix} 

 

(The $*$ is the ignored (0,0)-entry of the matrix.) For each such 

matrix $M$, compute a multinomial coefficient, mod 2: for each 

diagonal $\{m_{ij}: i+j=n\}$, compute $(\sum m_{i,j}!) / (m_{0,n}! 

m_{1,n-1}! ... m_{n,0}!)$. Multiply these together for all $n$. (To 

compute this mod 2, view the entries of the matrix as their base 2 

expansions; then this coefficient is zero if and only if there is some 

diagonal containing two numbers which have a summand in common in 

their base 2 expansion. For example, if 3 and 10 are in the same 

diagonal, the coefficient is zero, because $3=1+2$ and $10=2+8$: they 

both have a summand of 2.) 

 

Now, for each matrix with multinomial coefficient 1, let $t_n$ be 

the sum of the nth diagonal in the matrix; then 

 

.. MATH:: 

 

\text{Sq}(r_1, r_2, ...) \text{Sq}(s_1, s_2, ...) = \sum \text{Sq}(t_1, t_2, ...) 

 

The function :func:`milnor_multiplication` takes as input two tuples 

of non-negative integers, $r$ and $s$, which represent 

$\text{Sq}(r)=\text{Sq}(r_1, r_2, ...)$ and 

$\text{Sq}(s)=\text{Sq}(s_1, s_2, ...)$; it returns as output a 

dictionary whose keys are tuples $t=(t_1, t_2, ...)$ of non-negative 

integers, and for each tuple the associated value is the coefficient 

of $\text{Sq}(t)$ in the product formula. (Since we are working mod 2, 

this coefficient is 1 -- if it is zero, the element is omitted from 

the dictionary altogether). 

 

.. rubric:: Milnor multiplication, odd primes 

 

As for the `p=2` case, see Milnor's paper [Mil1958]_ for proofs. 

 

Fix an odd prime $p$. There are three steps to multiply Milnor basis 

elements $Q_{f_1} Q_{f_2} ... \mathcal{P}(q_1, q_2, ...)$ and 

$Q_{g_1} Q_{g_2} ... \mathcal{P}(s_1, s_2,...)$: first, use the formula 

 

.. MATH:: 

 

\mathcal{P}(q_1, q_2, ...) Q_k = Q_k \mathcal{P}(q_1, q_2, ...) 

+ Q_{k+1} \mathcal{P}(q_1 - p^k, q_2, ...) 

+ Q_{k+2} \mathcal{P}(q_1, q_2 - p^k, ...) 

+ ... 

 

Second, use the fact that the $Q_k$'s form an exterior algebra: $Q_k^2 = 

0$ for all $k$, and if $i \neq j$, then $Q_i$ and $Q_j$ anticommute: 

$Q_i Q_j = -Q_j Q_i$. After these two steps, the product is a linear 

combination of terms of the form 

 

.. MATH:: 

 

Q_{e_1} Q_{e_2} ... \mathcal{P}(r_1, r_2, ...) \mathcal{P}(s_1, s_2, ...). 

 

Finally, use Milnor matrices to multiply the pairs of 

$\mathcal{P}(...)$ terms, as at the prime 2: form all possible 

matrices $M$ with rows and columns indexed starting at 0, with 

position (0,0) deleted (or ignored), with $s_i$ equal to the sum of 

column $i$ for each $i$, and with $r_j$ equal to the weighted sum of 

row $j$: elements from column $i$ are multiplied by $p^i$. For 

example when $p=5$, to multiply $\mathcal{P}(5)$ and 

$\mathcal{P}(1,1)$, form the matrices 

 

.. MATH:: 

 

\begin{Vmatrix} 

* & 1 & 1 \\ 

5 & 0 & 0 

\end{Vmatrix} 

\quad \text{and} \quad 

\begin{Vmatrix} 

* & 0 & 1 \\ 

0 & 1 & 0 

\end{Vmatrix} 

 

For each such matrix $M$, compute a multinomial coefficient, mod $p$: 

for each diagonal $\{m_{ij}: i+j=n\}$, compute $(\sum m_{i,j}!) / 

(m_{0,n}! m_{1,n-1}! ... m_{n,0}!)$. Multiply these together for 

all $n$. 

 

Now, for each matrix with nonzero multinomial coefficient $b_M$, let 

$t_n$ be the sum of the $n$-th diagonal in the matrix; then 

 

.. MATH:: 

 

\mathcal{P}(r_1, r_2, ...) \mathcal{P}(s_1, s_2, ...) 

= \sum b_M \mathcal{P}(t_1, t_2, ...) 

 

For example when $p=5$, we have 

 

.. MATH:: 

 

\mathcal{P}(5) \mathcal{P}(1,1) = \mathcal{P}(6,1) + 2 \mathcal{P}(0,2). 

 

The function :func:`milnor_multiplication` takes as input two pairs of 

tuples of non-negative integers, $(g,q)$ and $(f,s)$, which represent 

$Q_{g_1} Q_{g_2} ... \mathcal{P}(q_1, q_2, ...)$ and 

$Q_{f_1} Q_{f_2} ... \mathcal{P}(s_1, s_2, ...)$. It returns as output a 

dictionary whose keys are pairs of tuples $(e,t)$ of non-negative 

integers, and for each tuple the associated value is the coefficient 

in the product formula. 

 

.. rubric:: The Adem relations and admissible sequences 

 

If `p=2`, then the mod 2 Steenrod algebra is generated by Steenrod 

squares `\text{Sq}^a` for `a \geq 0` (equal to the Milnor basis element 

`\text{Sq}(a)`). The *Adem relations* are as follows: if `a < 2b`, 

 

.. MATH:: 

 

\text{Sq}^a \text{Sq}^b = \sum_{j=0}^{a/2} \binom{b-j-1}{a-2j} \text{Sq}^{a+b-j} \text{Sq}^j 

 

A monomial `\text{Sq}^{i_1} \text{Sq}^{i_2} ... \text{Sq}^{i_n}` is called *admissible* if 

`i_k \geq 2 i_{k+1}` for all `k`. One can use the Adem relations to 

show that the admissible monomials span the Steenrod algebra, as a 

vector space; with more work, one can show that the admissible 

monomials are also linearly independent. They form the *Serre-Cartan* 

basis for the Steenrod algebra. To multiply a collection of 

admissible monomials, concatenate them and see if the result is 

admissible. If it is, you're done. If not, find the first pair `\text{Sq}^a 

\text{Sq}^b` where it fails to be admissible and apply the Adem relations 

there. Repeat with the resulting terms. One can prove that this 

process terminates in a finite number of steps, and therefore gives a 

procedure for multiplying elements of the Serre-Cartan basis. 

 

At an odd prime `p`, the Steenrod algebra is generated by the pth 

power operations `\mathcal{P}^a` (the same as `\mathcal{P}(a)` in the 

Milnor basis) and the Bockstein operation `\beta` (= `Q_0` in the 

Milnor basis). The odd primary *Adem relations* are as follows: if `a 

< pb`, 

 

.. MATH:: 

 

\mathcal{P}^a \mathcal{P}^b = \sum_{j=0}^{a/p} (-1)^{a+j} 

\binom{(b-j)(p-1)-1}{a-pj} \mathcal{P}^{a+b-j} \mathcal{P}^j 

 

Also, if `a \leq pb`, 

 

.. MATH:: 

 

\mathcal{P}^a \beta \mathcal{P}^b = \sum_{j=0}^{a/p} (-1)^{a+j} 

\binom{(b-j)(p-1)}{a-pj} \beta \mathcal{P}^{a+b-j} \mathcal{P}^j + 

\sum_{j=0}^{a/p} (-1)^{a+j-1} \binom{(b-j)(p-1)-1}{a-pj-1} 

\mathcal{P}^{a+b-j} \beta \mathcal{P}^j 

 

The *admissible* monomials at an odd prime are products of the form 

 

.. MATH:: 

 

\beta^{\epsilon_0} \mathcal{P}^{s_1} \beta^{\epsilon_1} 

\mathcal{P}^{s_2} ... \mathcal{P}^{s_n} \beta^{\epsilon_n} 

 

where `s_k \geq \epsilon_{k+1} + p s_{k+1}` for all `k`. As at the 

prime 2, these form a basis for the Steenrod algebra. 

 

The main function for this is :func:`make_mono_admissible`, 

which converts a product of Steenrod 

squares or pth power operations and Bocksteins into a dictionary 

representing a sum of admissible monomials. 

""" 

 

#***************************************************************************** 

# Copyright (C) 2008-2010 John H. Palmieri <palmieri@math.washington.edu> 

# Distributed under the terms of the GNU General Public License (GPL) 

#***************************************************************************** 

from six.moves import range 

 

from sage.misc.cachefunc import cached_function 

 

# Milnor, p=2 

 

def milnor_multiplication(r,s): 

r""" 

Product of Milnor basis elements r and s at the prime 2. 

 

INPUT: 

 

- r -- tuple of non-negative integers 

- s -- tuple of non-negative integers 

 

OUTPUT: 

 

Dictionary of terms of the form (tuple: coeff), where 

'tuple' is a tuple of non-negative integers and 'coeff' is 1. 

 

This computes Milnor matrices for the product of $\text{Sq}(r)$ 

and $\text{Sq}(s)$, computes their multinomial coefficients, and 

for each matrix whose coefficient is 1, add $\text{Sq}(t)$ to the 

output, where $t$ is the tuple formed by the diagonals sums from 

the matrix. 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_mult import milnor_multiplication 

sage: milnor_multiplication((2,), (1,)) 

{(0, 1): 1, (3,): 1} 

sage: milnor_multiplication((4,), (2,1)) 

{(0, 3): 1, (2, 0, 1): 1, (6, 1): 1} 

sage: milnor_multiplication((2,4), (0,1)) 

{(2, 0, 0, 1): 1, (2, 5): 1} 

 

These examples correspond to the following product computations: 

 

.. MATH:: 

 

\text{Sq}(2) \text{Sq}(1) = \text{Sq}(0,1) + \text{Sq}(3) 

 

\text{Sq}(4) \text{Sq}(2,1) = \text{Sq}(6,1) + \text{Sq}(0,3) + \text{Sq}(2,0,1) 

 

\text{Sq}(2,4) \text{Sq}(0,1) = \text{Sq}(2, 5) + \text{Sq}(2, 0, 0, 1) 

 

This uses the same algorithm Monks does in his Maple package: see 

http://mathweb.scranton.edu/monks/software/Steenrod/steen.html. 

""" 

result = {} 

rows = len(r) + 1 

cols = len(s) + 1 

diags = len(r) + len(s) 

# initialize matrix 

M = list(range(rows)) 

for i in range(rows): 

M[i] = [0]*cols 

for j in range(1,cols): 

M[0][j] = s[j-1] 

for i in range(1,rows): 

M[i][0] = r[i-1] 

for j in range(1,cols): 

M[i][j] = 0 

found = True 

while found: 

# check diagonals 

n = 1 

okay = 1 

diagonal = [0]*diags 

while n <= diags and okay is not None: 

nth_diagonal = [M[i][n-i] for i in range(max(0,n-cols+1), min(1+n,rows))] 

okay = multinomial(nth_diagonal) 

diagonal[n-1] = okay 

n = n + 1 

if okay is not None: 

i = diags - 1 

while i >= 0 and diagonal[i] == 0: 

i = i - 1 

t = tuple(diagonal[:i+1]) 

# reduce mod two: 

if t in result: 

del result[t] 

else: 

result[t] = 1 

# now look for new matrices: 

found = False 

i = 1 

while not found and i < rows: 

sum = M[i][0] 

j = 1 

while not found and j < cols: 

# check to see if column index j is small enough 

if sum >= 2**j: 

# now check to see if there's anything above this entry 

# to add to it 

temp_col_sum = 0 

for k in range(i): 

temp_col_sum += M[k][j] 

if temp_col_sum != 0: 

found = True 

for row in range(1,i): 

M[row][0] = r[row-1] 

for col in range(1,cols): 

M[0][col] = M[0][col] + M[row][col] 

M[row][col] = 0 

for col in range(1,j): 

M[0][col] = M[0][col] + M[i][col] 

M[i][col] = 0 

M[0][j] = M[0][j] - 1 

M[i][j] = M[i][j] + 1 

M[i][0] = sum - 2**j 

else: 

sum = sum + M[i][j] * 2**j 

else: 

sum = sum + M[i][j] * 2**j 

j = j + 1 

i = i + 1 

return result 

 

def multinomial(list): 

r""" 

Multinomial coefficient of list, mod 2. 

 

INPUT: 

 

- list -- list of integers 

 

OUTPUT: 

 

None if the multinomial coefficient is 0, or sum of list if it is 1 

 

Given the input $[n_1, n_2, n_3, ...]$, this computes the 

multinomial coefficient $(n_1 + n_2 + n_3 + ...)! / (n_1! n_2! 

n_3! ...)$, mod 2. The method is roughly this: expand each 

$n_i$ in binary. If there is a 1 in the same digit for any $n_i$ 

and $n_j$ with $i\neq j$, then the coefficient is 0; otherwise, it 

is 1. 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_mult import multinomial 

sage: multinomial([1,2,4]) 

7 

sage: multinomial([1,2,5]) 

sage: multinomial([1,2,12,192,256]) 

463 

 

This function does not compute any factorials, so the following are 

actually reasonable to do:: 

 

sage: multinomial([1,65536]) 

65537 

sage: multinomial([4,65535]) 

sage: multinomial([32768,65536]) 

98304 

""" 

old_sum = list[0] 

okay = True 

i = 1 

while okay and i < len(list): 

j = 1 

while okay and j <= min(old_sum, list[i]): 

if j & old_sum == j: 

okay = (j & list[i] == 0) 

j = j << 1 

old_sum = old_sum + list[i] 

i = i + 1 

if okay: 

return old_sum 

else: 

return None 

 

# Milnor, p odd 

 

def milnor_multiplication_odd(m1,m2,p): 

r""" 

Product of Milnor basis elements defined by m1 and m2 at the odd prime p. 

 

INPUT: 

 

- m1 - pair of tuples (e,r), where e is an increasing tuple of 

non-negative integers and r is a tuple of non-negative integers 

- m2 - pair of tuples (f,s), same format as m1 

- p -- odd prime number 

 

OUTPUT: 

 

Dictionary of terms of the form (tuple: coeff), where 'tuple' is 

a pair of tuples, as for r and s, and 'coeff' is an integer mod p. 

 

This computes the product of the Milnor basis elements 

$Q_{e_1} Q_{e_2} ... P(r_1, r_2, ...)$ and 

$Q_{f_1} Q_{f_2} ... P(s_1, s_2, ...)$. 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_mult import milnor_multiplication_odd 

sage: milnor_multiplication_odd(((0,2),(5,)), ((1,),(1,)), 5) 

{((0, 1, 2), (0, 1)): 4, ((0, 1, 2), (6,)): 4} 

sage: milnor_multiplication_odd(((0,2,4),()), ((1,3),()), 7) 

{((0, 1, 2, 3, 4), ()): 6} 

sage: milnor_multiplication_odd(((0,2,4),()), ((1,5),()), 7) 

{((0, 1, 2, 4, 5), ()): 1} 

sage: milnor_multiplication_odd(((),(6,)), ((),(2,)), 3) 

{((), (0, 2)): 1, ((), (4, 1)): 1, ((), (8,)): 1} 

 

These examples correspond to the following product computations: 

 

.. MATH:: 

 

p=5: \quad Q_0 Q_2 \mathcal{P}(5) Q_1 \mathcal{P}(1) = 4 Q_0 Q_1 Q_2 \mathcal{P}(0,1) + 4 Q_0 Q_1 Q_2 \mathcal{P}(6) 

 

p=7: \quad (Q_0 Q_2 Q_4) (Q_1 Q_3) = 6 Q_0 Q_1 Q_2 Q_3 Q_4 

 

p=7: \quad (Q_0 Q_2 Q_4) (Q_1 Q_5) = Q_0 Q_1 Q_2 Q_3 Q_5 

 

p=3: \quad \mathcal{P}(6) \mathcal{P}(2) = \mathcal{P}(0,2) + \mathcal{P}(4,1) + \mathcal{P}(8) 

 

The following used to fail until the trailing zeroes were 

eliminated in p_mono:: 

 

sage: A = SteenrodAlgebra(3) 

sage: a = A.P(0,3); b = A.P(12); c = A.Q(1,2) 

sage: (a+b)*c == a*c + b*c 

True 

 

Test that the bug reported in :trac:`7212` has been fixed:: 

 

sage: A.P(36,6)*A.P(27,9,81) 

2 P(13,21,83) + P(14,24,82) + P(17,20,83) + P(25,18,83) + P(26,21,82) + P(36,15,80,1) + P(49,12,83) + 2 P(50,15,82) + 2 P(53,11,83) + 2 P(63,15,81) 

 

Associativity once failed because of a sign error:: 

 

sage: a,b,c = A.Q_exp(0,1), A.P(3), A.Q_exp(1,1) 

sage: (a*b)*c == a*(b*c) 

True 

 

This uses the same algorithm Monks does in his Maple package to 

iterate through the possible matrices: see 

http://mathweb.scranton.edu/monks/software/Steenrod/steen.html. 

""" 

from sage.rings.all import GF 

F = GF(p) 

(f,s) = m2 

# First compute Q_e0 Q_e1 ... P(r1, r2, ...) Q_f0 Q_f1 ... 

# Store results (as dictionary of pairs of tuples) in 'answer'. 

answer = {m1: F(1)} 

for k in f: 

old_answer = answer 

answer = {} 

for mono in old_answer: 

if k not in mono[0]: 

q_mono = set(mono[0]) 

if len(q_mono) > 0: 

ind = len(q_mono.intersection(range(k,1+max(q_mono)))) 

else: 

ind = 0 

coeff = (-1)**ind * old_answer[mono] 

lst = list(mono[0]) 

if ind == 0: 

lst.append(k) 

else: 

lst.insert(-ind,k) 

q_mono = tuple(lst) 

p_mono = mono[1] 

answer[(q_mono, p_mono)] = F(coeff) 

for i in range(1,1+len(mono[1])): 

if (k+i not in mono[0]) and (p**k <= mono[1][i-1]): 

q_mono = set(mono[0]) 

if len(q_mono) > 0: 

ind = len(q_mono.intersection(range(k+i,1+max(q_mono)))) 

else: 

ind = 0 

coeff = (-1)**ind * old_answer[mono] 

lst = list(mono[0]) 

if ind == 0: 

lst.append(k+i) 

else: 

lst.insert(-ind,k+i) 

q_mono = tuple(lst) 

p_mono = list(mono[1]) 

p_mono[i-1] = p_mono[i-1] - p**k 

 

# The next two lines were added so that p_mono won't 

# have trailing zeros. This makes p_mono uniquely 

# determined by P(*p_mono). 

 

while len(p_mono)>0 and p_mono[-1] == 0: 

p_mono.pop() 

 

answer[(q_mono, tuple(p_mono))] = F(coeff) 

# Now for the Milnor matrices. For each entry '(e,r): coeff' in answer, 

# multiply r with s. Record coefficient for matrix and multiply by coeff. 

# Store in 'result'. 

if not s: 

result = answer 

else: 

result = {} 

for (e, r) in answer: 

old_coeff = answer[(e,r)] 

# Milnor multiplication for r and s 

rows = len(r) + 1 

cols = len(s) + 1 

diags = len(r) + len(s) 

# initialize matrix 

M = list(range(rows)) 

for i in range(rows): 

M[i] = [0]*cols 

for j in range(1,cols): 

M[0][j] = s[j-1] 

for i in range(1,rows): 

M[i][0] = r[i-1] 

for j in range(1,cols): 

M[i][j] = 0 

found = True 

while found: 

# check diagonals 

n = 1 

coeff = old_coeff 

diagonal = [0]*diags 

while n <= diags and coeff != 0: 

nth_diagonal = [M[i][n-i] for i in range(max(0,n-cols+1), min(1+n,rows))] 

coeff = coeff * multinomial_odd(nth_diagonal,p) 

diagonal[n-1] = sum(nth_diagonal) 

n = n + 1 

if F(coeff) != 0: 

i = diags - 1 

while i >= 0 and diagonal[i] == 0: 

i = i - 1 

t = tuple(diagonal[:i+1]) 

if (e,t) in result: 

result[(e,t)] = F(coeff + result[(e,t)]) 

else: 

result[(e,t)] = F(coeff) 

# now look for new matrices: 

found = False 

i = 1 

while not found and i < rows: 

temp_sum = M[i][0] 

j = 1 

while not found and j < cols: 

# check to see if column index j is small enough 

if temp_sum >= p**j: 

# now check to see if there's anything above this entry 

# to add to it 

temp_col_sum = 0 

for k in range(i): 

temp_col_sum += M[k][j] 

if temp_col_sum != 0: 

found = True 

for row in range(1,i): 

M[row][0] = r[row-1] 

for col in range(1,cols): 

M[0][col] = M[0][col] + M[row][col] 

M[row][col] = 0 

for col in range(1,j): 

M[0][col] = M[0][col] + M[i][col] 

M[i][col] = 0 

M[0][j] = M[0][j] - 1 

M[i][j] = M[i][j] + 1 

M[i][0] = temp_sum - p**j 

else: 

temp_sum += M[i][j] * p**j 

else: 

temp_sum += M[i][j] * p**j 

j = j + 1 

i = i + 1 

return result 

 

def multinomial_odd(list,p): 

r""" 

Multinomial coefficient of list, mod p. 

 

INPUT: 

 

- list -- list of integers 

- p -- a prime number 

 

OUTPUT: 

 

Associated multinomial coefficient, mod p 

 

Given the input $[n_1, n_2, n_3, ...]$, this computes the 

multinomial coefficient $(n_1 + n_2 + n_3 + ...)! / (n_1! n_2! 

n_3! ...)$, mod $p$. The method is this: expand each $n_i$ in 

base $p$: $n_i = \sum_j p^j n_{ij}$. Do the same for the sum of 

the $n_i$'s, which we call $m$: $m = \sum_j p^j m_j$. Then the 

multinomial coefficient is congruent, mod $p$, to the product of 

the multinomial coefficients $m_j! / (n_{1j}! n_{2j}! ...)$. 

 

Furthermore, any multinomial coefficient $m! / (n_1! n_2! ...)$ 

can be computed as a product of binomial coefficients: it equals 

 

.. MATH:: 

 

\binom{n_1}{n_1} \binom{n_1 + n_2}{n_2} \binom{n_1 + n_2 + n_3}{n_3} ... 

 

This is convenient because Sage's binomial function returns 

integers, not rational numbers (as would be produced just by 

dividing factorials). 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_mult import multinomial_odd 

sage: multinomial_odd([1,2,4], 2) 

1 

sage: multinomial_odd([1,2,4], 7) 

0 

sage: multinomial_odd([1,2,4], 11) 

6 

sage: multinomial_odd([1,2,4], 101) 

4 

sage: multinomial_odd([1,2,4], 107) 

105 

""" 

from sage.rings.all import GF, Integer 

from sage.arith.all import binomial 

n = sum(list) 

answer = 1 

F = GF(p) 

n_expansion = Integer(n).digits(p) 

list_expansion = [Integer(k).digits(p) for k in list] 

index = 0 

while answer != 0 and index < len(n_expansion): 

multi = F(1) 

partial_sum = 0 

for exp in list_expansion: 

if index < len(exp): 

partial_sum = partial_sum + exp[index] 

multi = F(multi * binomial(partial_sum, exp[index])) 

answer = F(answer * multi) 

index += 1 

return answer 

 

# Adem relations, Serre-Cartan basis, admissible sequences 

 

def binomial_mod2(n,k): 

r""" 

The binomial coefficient `\binom{n}{k}`, computed mod 2. 

 

INPUT: 

 

- `n`, `k` - integers 

 

OUTPUT: 

 

`n` choose `k`, mod 2 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_mult import binomial_mod2 

sage: binomial_mod2(4,2) 

0 

sage: binomial_mod2(5,4) 

1 

sage: binomial_mod2(3 * 32768, 32768) 

1 

sage: binomial_mod2(4 * 32768, 32768) 

0 

""" 

if n < k: 

return 0 

elif ((n-k) & k) == 0: 

return 1 

else: 

return 0 

 

def binomial_modp(n,k,p): 

r""" 

The binomial coefficient `\binom{n}{k}`, computed mod `p`. 

 

INPUT: 

 

- `n`, `k` - integers 

- `p` - prime number 

 

OUTPUT: 

 

`n` choose `k`, mod `p` 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_mult import binomial_modp 

sage: binomial_modp(5,2,3) 

1 

sage: binomial_modp(6,2,11) # 6 choose 2 = 15 

4 

""" 

if n < k: 

return 0 

return multinomial_odd([n-k, k], p) 

 

@cached_function 

def adem(a, b, c=0, p=2, generic=None): 

r""" 

The mod `p` Adem relations 

 

INPUT: 

 

- `a`, `b`, `c` (optional) - nonnegative integers, corresponding 

to either `P^a P^b` or (if `c` present) to `P^a \beta^b P^c` 

- `p` - positive prime number (optional, default 2) 

- `generic` - whether to use the generic Steenrod algebra, (default: depends on prime) 

 

OUTPUT: 

 

a dictionary representing the mod `p` Adem relations 

applied to `P^a P^b` or (if `c` present) to `P^a \beta^b P^c`. 

 

The mod `p` Adem relations for the mod `p` Steenrod algebra are as 

follows: if `p=2`, then if `a < 2b`, 

 

.. MATH:: 

 

\text{Sq}^a \text{Sq}^b = \sum_{j=0}^{a/2} \binom{b-j-1}{a-2j} \text{Sq}^{a+b-j} \text{Sq}^j 

 

If `p` is odd, then if `a < pb`, 

 

.. MATH:: 

 

P^a P^b = \sum_{j=0}^{a/p} (-1)^{a+j} \binom{(b-j)(p-1)-1}{a-pj} P^{a+b-j} P^j 

 

Also for `p` odd, if `a \leq pb`, 

 

.. MATH:: 

 

P^a \beta P^b = \sum_{j=0}^{a/p} (-1)^{a+j} \binom{(b-j)(p-1)}{a-pj} \beta P^{a+b-j} P^j 

+ \sum_{j=0}^{a/p} (-1)^{a+j-1} \binom{(b-j)(p-1)-1}{a-pj-1} P^{a+b-j} \beta P^j 

 

EXAMPLES: 

 

If two arguments (`a` and `b`) are given, then computations are 

done mod 2. If `a \geq 2b`, then the dictionary {(a,b): 1} is 

returned. Otherwise, the right side of the mod 2 Adem relation 

for `\text{Sq}^a \text{Sq}^b` is returned. For example, since 

`\text{Sq}^2 \text{Sq}^2 = \text{Sq}^3 \text{Sq}^1`, we have:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_mult import adem 

sage: adem(2,2) # indirect doctest 

{(3, 1): 1} 

sage: adem(4,2) 

{(4, 2): 1} 

sage: adem(4,4) 

{(6, 2): 1, (7, 1): 1} 

 

If `p` is given and is odd, then with two inputs `a` and `b`, the 

Adem relation for `P^a P^b` is computed. With three inputs `a`, 

`b`, `c`, the Adem relation for `P^a \beta^b P^c` is computed. 

In either case, the keys in the output are all tuples of odd length, 

with ``(i_1, i_2, ..., i_m)`` representing 

 

.. MATH:: 

 

\beta^{i_1} P^{i_2} \beta^{i_3} P^{i_4} ... \beta^{i_m} 

 

For instance:: 

 

sage: adem(3,1, p=3) 

{(0, 3, 0, 1, 0): 1} 

sage: adem(3,0,1, p=3) 

{(0, 3, 0, 1, 0): 1} 

sage: adem(1,0,1, p=7) 

{(0, 2, 0): 2} 

sage: adem(1,1,1, p=5) 

{(0, 2, 1): 1, (1, 2, 0): 1} 

sage: adem(1,1,2, p=5) 

{(0, 3, 1): 1, (1, 3, 0): 2} 

""" 

if generic is None: 

generic = False if p==2 else True 

if not generic: 

if b == 0: return {(a,): 1} 

elif a == 0: return {(b,): 1} 

elif a >= 2*b: return {(a,b): 1} 

result = {} 

for c in range(1 + a//2): 

if binomial_mod2(b-c-1, a-2*c) == 1: 

if c == 0: 

result[(a+b,)] = 1 

else: 

result[(a+b-c,c)] = 1 

return result 

# p odd 

if a == 0 and b == 0: 

return {(c,): 1} 

if c == 0: 

bockstein = 0 

A = a 

B = b 

else: 

A = a 

B = c 

bockstein = b # should be 0 or 1 

if A == 0: 

return {(bockstein, B, 0): 1} 

if B == 0: 

return {(0, A, bockstein): 1} 

if bockstein == 0: 

if A >= p*B: # admissible 

return {(0,A,0,B,0): 1} 

result = {} 

for j in range(1 + a//p): 

coeff = (-1)**(A+j) * binomial_modp((B-j) * (p-1) - 1, A - p*j, p) 

if coeff % p != 0: 

if j == 0: 

result[(0,A+B,0)] = coeff 

else: 

result[(0,A+B-j,0,j,0)] = coeff 

else: 

if A >= p*B + 1: # admissible 

return {(0,A,1,B,0): 1} 

result = {} 

for j in range(1 + a//p): 

coeff = (-1)**(A+j) * binomial_modp((B-j) * (p-1), A - p*j, p) 

if coeff % p != 0: 

if j == 0: 

result[(1,A+B,0)] = coeff 

else: 

result[(1,A+B-j,0,j,0)] = coeff 

for j in range(1 + (a-1)//p): 

coeff = (-1)**(A+j-1) * binomial_modp((B-j) * (p-1) - 1, A - p*j - 1, p) 

if coeff % p != 0: 

if j == 0: 

result[(0,A+B,1)] = coeff 

else: 

result[(0,A+B-j,1,j,0)] = coeff 

return result 

 

@cached_function 

def make_mono_admissible(mono, p=2, generic=None): 

r""" 

Given a tuple ``mono``, view it as a product of Steenrod 

operations, and return a dictionary giving data equivalent to 

writing that product as a linear combination of admissible 

monomials. 

 

When `p=2`, the sequence (and hence the corresponding monomial) 

`(i_1, i_2, ...)` is admissible if `i_j \geq 2 i_{j+1}` for all 

`j`. 

 

When `p` is odd, the sequence `(e_1, i_1, e_2, i_2, ...)` is 

admissible if `i_j \geq e_{j+1} + p i_{j+1}` for all `j`. 

 

INPUT: 

 

- ``mono`` - a tuple of non-negative integers 

- `p` - prime number, optional (default 2) 

- `generic` - whether to use the generic Steenrod algebra, (default: depends on prime) 

 

OUTPUT: 

 

Dictionary of terms of the form (tuple: coeff), where 

'tuple' is an admissible tuple of non-negative integers and 

'coeff' is its coefficient. This corresponds to a linear 

combination of admissible monomials. When `p` is odd, each tuple 

must have an odd length: it should be of the form `(e_1, i_1, e_2, 

i_2, ..., e_k)` where each `e_j` is either 0 or 1 and each `i_j` 

is a positive integer: this corresponds to the admissible monomial 

 

.. MATH:: 

 

\beta^{e_1} \mathcal{P}^{i_2} \beta^{e_2} \mathcal{P}^{i_2} ... 

\mathcal{P}^{i_k} \beta^{e_k} 

 

ALGORITHM: 

 

Given `(i_1, i_2, i_3, ...)`, apply the Adem relations to the first 

pair (or triple when `p` is odd) where the sequence is inadmissible, 

and then apply this function recursively to each of the resulting 

tuples `(i_1, ..., i_{j-1}, NEW, i_{j+2}, ...)`, keeping track of 

the coefficients. 

 

EXAMPLES:: 

 

sage: from sage.algebras.steenrod.steenrod_algebra_mult import make_mono_admissible 

sage: make_mono_admissible((12,)) # already admissible, indirect doctest 

{(12,): 1} 

sage: make_mono_admissible((2,1)) # already admissible 

{(2, 1): 1} 

sage: make_mono_admissible((2,2)) 

{(3, 1): 1} 

sage: make_mono_admissible((2, 2, 2)) 

{(5, 1): 1} 

sage: make_mono_admissible((0, 2, 0, 1, 0), p=7) 

{(0, 3, 0): 3} 

 

Test the fix from :trac:`13796`:: 

 

sage: SteenrodAlgebra(p=2, basis='adem').Q(2) * (Sq(6) * Sq(2)) # indirect doctest 

Sq^10 Sq^4 Sq^1 + Sq^10 Sq^5 + Sq^12 Sq^3 + Sq^13 Sq^2 

""" 

from sage.rings.all import GF 

if generic is None: 

generic = False if p==2 else True 

F = GF(p) 

if len(mono) == 1: 

return {mono: 1} 

if not generic and len(mono) == 2: 

return adem(*mono, p=p, generic=generic) 

if not generic: 

# check to see if admissible: 

admissible = True 

for j in range(len(mono)-1): 

if mono[j] < 2*mono[j+1]: 

admissible = False 

break 

if admissible: 

return {mono: 1} 

# else j is the first index where admissibility fails 

ans = {} 

y = adem(mono[j], mono[j+1]) 

for x in y: 

new = mono[:j] + x + mono[j+2:] 

new = make_mono_admissible(new) 

for m in new: 

if m in ans: 

ans[m] = ans[m] + y[x] * new[m] 

if F(ans[m]) == 0: 

del ans[m] 

else: 

ans[m] = y[x] * new[m] 

return ans 

# p odd 

# check to see if admissible: 

admissible = True 

for j in range(1, len(mono)-2, 2): 

if mono[j] < mono[j+1] + p*mono[j+2]: 

admissible = False 

break 

if admissible: 

return {mono: 1} 

# else j is the first index where admissibility fails 

ans = {} 

y = adem(*mono[j:j+3], p=p, generic=True) 

for x in y: 

new_x = list(x) 

new_x[0] = mono[j-1] + x[0] 

if len(mono) >= j+3: 

new_x[-1] = mono[j+3] + x[-1] 

if new_x[0] <= 1 and new_x[-1] <= 1: 

new = mono[:j-1] + tuple(new_x) + mono[j+4:] 

new = make_mono_admissible(new, p, generic=True) 

for m in new: 

if m in ans: 

ans[m] = ans[m] + y[x] * new[m] 

if F(ans[m]) == 0: 

del ans[m] 

else: 

ans[m] = y[x] * new[m] 

return ans