Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

r""" 

Weyl Algebras 

 

AUTHORS: 

 

- Travis Scrimshaw (2013-09-06): Initial version 

""" 

 

#***************************************************************************** 

# Copyright (C) 2013 Travis Scrimshaw <tscrim at ucdavis.edu> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.misc.cachefunc import cached_method 

from sage.misc.latex import latex 

from sage.structure.richcmp import richcmp 

from sage.structure.element import AlgebraElement 

from sage.structure.unique_representation import UniqueRepresentation 

from copy import copy 

from sage.categories.rings import Rings 

from sage.categories.algebras_with_basis import AlgebrasWithBasis 

from sage.sets.family import Family 

import sage.data_structures.blas_dict as blas 

from sage.rings.ring import Algebra 

from sage.rings.polynomial.polynomial_ring import PolynomialRing_general 

from sage.rings.polynomial.multi_polynomial_ring_generic import MPolynomialRing_generic 

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing 

 

import six 

 

 

def repr_from_monomials(monomials, term_repr, use_latex=False): 

r""" 

Return a string representation of an element of a free module 

from the dictionary ``monomials``. 

 

INPUT: 

 

- ``monomials`` -- a list of pairs ``[m, c]`` where ``m`` is the index 

and ``c`` is the coefficient 

- ``term_repr`` -- a function which returns a string given an index 

(can be ``repr`` or ``latex``, for example) 

- ``use_latex`` -- (default: ``False``) if ``True`` then the output is 

in latex format 

 

EXAMPLES:: 

 

sage: from sage.algebras.weyl_algebra import repr_from_monomials 

sage: R.<x,y,z> = QQ[] 

sage: d = [(z, 4/7), (y, sqrt(2)), (x, -5)] 

sage: repr_from_monomials(d, lambda m: repr(m)) 

'4/7*z + sqrt(2)*y - 5*x' 

sage: a = repr_from_monomials(d, lambda m: latex(m), True); a 

\frac{4}{7} z + \sqrt{2} y - 5 x 

sage: type(a) 

<class 'sage.misc.latex.LatexExpr'> 

 

The zero element:: 

 

sage: repr_from_monomials([], lambda m: repr(m)) 

'0' 

sage: a = repr_from_monomials([], lambda m: latex(m), True); a 

0 

sage: type(a) 

<class 'sage.misc.latex.LatexExpr'> 

 

A "unity" element:: 

 

sage: repr_from_monomials([(1, 1)], lambda m: repr(m)) 

'1' 

sage: a = repr_from_monomials([(1, 1)], lambda m: latex(m), True); a 

1 

sage: type(a) 

<class 'sage.misc.latex.LatexExpr'> 

 

:: 

 

sage: repr_from_monomials([(1, -1)], lambda m: repr(m)) 

'-1' 

sage: a = repr_from_monomials([(1, -1)], lambda m: latex(m), True); a 

-1 

sage: type(a) 

<class 'sage.misc.latex.LatexExpr'> 

 

Leading minus signs are dealt with appropriately:: 

 

sage: d = [(z, -4/7), (y, -sqrt(2)), (x, -5)] 

sage: repr_from_monomials(d, lambda m: repr(m)) 

'-4/7*z - sqrt(2)*y - 5*x' 

sage: a = repr_from_monomials(d, lambda m: latex(m), True); a 

-\frac{4}{7} z - \sqrt{2} y - 5 x 

sage: type(a) 

<class 'sage.misc.latex.LatexExpr'> 

 

Indirect doctests using a class that uses this function:: 

 

sage: R.<x,y> = QQ[] 

sage: A = CliffordAlgebra(QuadraticForm(R, 3, [x,0,-1,3,-4,5])) 

sage: a,b,c = A.gens() 

sage: a*b*c 

e0*e1*e2 

sage: b*c 

e1*e2 

sage: (a*a + 2) 

x + 2 

sage: c*(a*a + 2)*b 

(-x - 2)*e1*e2 - 4*x - 8 

sage: latex(c*(a*a + 2)*b) 

\left( - x - 2 \right) e_{1} e_{2} - 4 x - 8 

""" 

if not monomials: 

if use_latex: 

return latex(0) 

else: 

return '0' 

 

ret = '' 

for m,c in monomials: 

# Get the monomial portion 

term = term_repr(m) 

 

# Determine what to do with the coefficient 

if use_latex: 

coeff = latex(c) 

else: 

coeff = repr(c) 

 

if not term or term == '1': 

term = coeff 

elif coeff == '-1': 

term = '-' + term 

elif coeff != '1': 

atomic_repr = c.parent()._repr_option('element_is_atomic') 

if not atomic_repr and (coeff.find("+") != -1 or coeff.rfind("-") > 0): 

if use_latex: 

term = '\\left(' + coeff + '\\right) ' + term 

elif coeff not in ['', '-']: 

term = '(' + coeff + ')*' + term 

else: 

if use_latex: 

term = coeff + ' ' + term 

else: 

term = coeff + '*' + term 

 

# Append this term with the correct sign 

if ret: 

if term[0] == '-': 

ret += ' - ' + term[1:] 

else: 

ret += ' + ' + term 

else: 

ret = term 

return ret 

 

class DifferentialWeylAlgebraElement(AlgebraElement): 

""" 

An element in a differential Weyl algebra. 

""" 

def __init__(self, parent, monomials): 

""" 

Initialize ``self``. 

 

TESTS:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: elt = ((x^3-z)*dx + dy)^2 

sage: TestSuite(elt).run() 

""" 

AlgebraElement.__init__(self, parent) 

self.__monomials = monomials 

 

def _repr_(self): 

r""" 

Return a string representation of ``self``. 

 

TESTS:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: ((x^3-z)*dx + dy)^2 

dy^2 + 2*x^3*dx*dy - 2*z*dx*dy + x^6*dx^2 - 2*x^3*z*dx^2 

+ z^2*dx^2 + 3*x^5*dx - 3*x^2*z*dx 

""" 

def term(m): 

ret = '' 

for i, power in enumerate(m[0] + m[1]): 

if power == 0: 

continue 

name = self.parent().variable_names()[i] 

if ret: 

ret += '*' 

if power == 1: 

ret += '{}'.format(name) 

else: 

ret += '{}^{}'.format(name, power) 

return ret 

return repr_from_monomials(self.list(), term) 

 

def _latex_(self): 

r""" 

Return a `\LaTeX` representation of ``self``. 

 

TESTS:: 

 

sage: R = PolynomialRing(QQ, 'x', 3) 

sage: W = DifferentialWeylAlgebra(R) 

sage: x0,x1,x2,dx0,dx1,dx2 = W.gens() 

sage: latex( ((x0^3-x2)*dx0 + dx1)^2 ) 

\frac{\partial^{2}}{\partial x_{1}^{2}} 

+ 2 x_{0}^{3} \frac{\partial^{2}}{\partial x_{0} \partial x_{1}} 

- 2 x_{2} \frac{\partial^{2}}{\partial x_{0} \partial x_{1}} 

+ x_{0}^{6} \frac{\partial^{2}}{\partial x_{0}^{2}} 

- 2 x_{0}^{3} x_{2} \frac{\partial^{2}}{\partial x_{0}^{2}} 

+ x_{2}^{2} \frac{\partial^{2}}{\partial x_{0}^{2}} 

+ 3 x_{0}^{5} \frac{\partial}{\partial x_{0}} 

- 3 x_{0}^{2} x_{2} \frac{\partial}{\partial x_{0}} 

""" 

def term(m): 

R = self.parent()._poly_ring 

exp = lambda e: '^{{{}}}'.format(e) if e > 1 else '' 

def half_term(mon, polynomial): 

total = sum(mon) 

if total == 0: 

return '1' 

ret = ' '.join('{}{}'.format(latex(R.gen(i)), exp(power)) if polynomial 

else '\\partial {}{}'.format(latex(R.gen(i)), exp(power)) 

for i,power in enumerate(mon) if power > 0) 

if not polynomial: 

return '\\frac{{\\partial{}}}{{{}}}'.format(exp(total), ret) 

return ret 

p = half_term(m[0], True) 

d = half_term(m[1], False) 

if p == '1': # No polynomial part 

return d 

elif d == '1': # No differential part 

return p 

else: 

return p + ' ' + d 

return repr_from_monomials(self.list(), term, True) 

 

def _richcmp_(self, other, op): 

""" 

Rich comparison for equal parents. 

 

TESTS:: 

 

sage: R.<x,y,z> = QQ[] 

sage: W = DifferentialWeylAlgebra(R) 

sage: dx,dy,dz = W.differentials() 

sage: dy*(x^3-y*z)*dx == -z*dx + x^3*dx*dy - y*z*dx*dy 

True 

sage: W.zero() == 0 

True 

sage: W.one() == 1 

True 

sage: x == 1 

False 

sage: x + 1 == 1 

False 

sage: W(x^3 - y*z) == x^3 - y*z 

True 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: dx != dy 

True 

sage: W.one() != 1 

False 

""" 

return richcmp(self.__monomials, other.__monomials, op) 

 

def __neg__(self): 

""" 

Return the negative of ``self``. 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: dy - (3*x - z)*dx 

dy + z*dx - 3*x*dx 

""" 

return self.__class__(self.parent(), {m:-c for m,c in six.iteritems(self.__monomials)}) 

 

def _add_(self, other): 

""" 

Return ``self`` added to ``other``. 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: (dx*dy) + dz + x^3 - 2 

dx*dy + dz + x^3 - 2 

""" 

F = self.parent() 

return self.__class__(F, blas.add(self.__monomials, other.__monomials)) 

 

d = copy(self.__monomials) 

zero = self.parent().base_ring().zero() 

for m,c in six.iteritems(other.__monomials): 

d[m] = d.get(m, zero) + c 

if d[m] == zero: 

del d[m] 

return self.__class__(self.parent(), d) 

 

def _mul_(self, other): 

""" 

Return ``self`` multiplied by ``other``. 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: dx*(x*y + z) 

x*y*dx + z*dx + y 

sage: ((x^3-z)*dx + dy) * (dx*dz^2 - 10*x) 

dx*dy*dz^2 + x^3*dx^2*dz^2 - z*dx^2*dz^2 - 10*x*dy - 10*x^4*dx 

+ 10*x*z*dx - 10*x^3 + 10*z 

""" 

add_tuples = lambda x,y: tuple(a + y[i] for i,a in enumerate(x)) 

d = {} 

n = self.parent()._n 

t = tuple([0]*n) 

zero = self.parent().base_ring().zero() 

for ml in self.__monomials: 

cl = self.__monomials[ml] 

for mr in other.__monomials: 

cr = other.__monomials[mr] 

cur = [ ((mr[0], t), cl * cr) ] 

for i,p in enumerate(ml[1]): 

for j in range(p): 

next = [] 

for m,c in cur: # Distribute and apply the derivative 

diff = list(m[1]) 

diff[i] += 1 

next.append( ((m[0], tuple(diff)), c) ) 

if m[0][i] != 0: 

poly = list(m[0]) 

c *= poly[i] 

poly[i] -= 1 

next.append( ((tuple(poly), m[1]), c) ) 

cur = next 

 

for m,c in cur: 

# multiply the resulting term by the other term 

m = (add_tuples(ml[0], m[0]), add_tuples(mr[1], m[1])) 

d[m] = d.get(m, zero) + c 

if d[m] == zero: 

del d[m] 

return self.__class__(self.parent(), d) 

 

def _rmul_(self, other): 

""" 

Multiply ``self`` on the right side of ``other``. 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: a = (x*y + z) * dx 

sage: 3/2 * a 

3/2*x*y*dx + 3/2*z*dx 

""" 

if other == 0: 

return self.parent().zero() 

M = self.__monomials 

return self.__class__(self.parent(), {t: other*M[t] for t in M}) 

 

def _lmul_(self, other): 

""" 

Multiply ``self`` on the left side of ``other``. 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: a = (x*y + z) * dx 

sage: a * 3/2 

3/2*x*y*dx + 3/2*z*dx 

""" 

if other == 0: 

return self.parent().zero() 

M = self.__monomials 

return self.__class__(self.parent(), {t: M[t]*other for t in M}) 

 

def monomial_coefficients(self, copy=True): 

""" 

Return a dictionary which has the basis keys in the support 

of ``self`` as keys and their corresponding coefficients 

as values. 

 

INPUT: 

 

- ``copy`` -- (default: ``True``) if ``self`` is internally 

represented by a dictionary ``d``, then make a copy of ``d``; 

if ``False``, then this can cause undesired behavior by 

mutating ``d`` 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: elt = (dy - (3*x - z)*dx) 

sage: sorted(elt.monomial_coefficients().items()) 

[(((0, 0, 0), (0, 1, 0)), 1), 

(((0, 0, 1), (1, 0, 0)), 1), 

(((1, 0, 0), (1, 0, 0)), -3)] 

""" 

if copy: 

return dict(self.__monomials) 

return self.__monomials 

 

def __iter__(self): 

""" 

Return an iterator of ``self``. 

 

This is the iterator of ``self.list()``. 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: list(dy - (3*x - z)*dx) 

[(((0, 0, 0), (0, 1, 0)), 1), 

(((0, 0, 1), (1, 0, 0)), 1), 

(((1, 0, 0), (1, 0, 0)), -3)] 

""" 

return iter(self.list()) 

 

def list(self): 

""" 

Return ``self`` as a list. 

 

This list consists of pairs `(m, c)`, where `m` is a pair of 

tuples indexing a basis element of ``self``, and `c` is the 

coordinate of ``self`` corresponding to this basis element. 

(Only nonzero coordinates are shown.) 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: elt = dy - (3*x - z)*dx 

sage: elt.list() 

[(((0, 0, 0), (0, 1, 0)), 1), 

(((0, 0, 1), (1, 0, 0)), 1), 

(((1, 0, 0), (1, 0, 0)), -3)] 

""" 

return sorted(self.__monomials.items(), 

key=lambda x: (-sum(x[0][1]), x[0][1], -sum(x[0][0]), x[0][0]) ) 

 

def support(self): 

""" 

Return the support of ``self``. 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: elt = dy - (3*x - z)*dx + 1 

sage: elt.support() 

[((0, 0, 0), (0, 1, 0)), 

((1, 0, 0), (1, 0, 0)), 

((0, 0, 0), (0, 0, 0)), 

((0, 0, 1), (1, 0, 0))] 

""" 

return self.__monomials.keys() 

 

# This is essentially copied from 

# sage.combinat.free_module.CombinatorialFreeModuleElement 

def __truediv__(self, x): 

""" 

Division by coefficients. 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: x / 2 

1/2*x 

sage: W.<x,y,z> = DifferentialWeylAlgebra(ZZ) 

sage: a = 2*x + 4*y*z 

sage: a / 2 

2*y*z + x 

""" 

F = self.parent() 

D = self.__monomials 

if F.base_ring().is_field(): 

x = F.base_ring()( x ) 

x_inv = x**-1 

D = blas.linear_combination( [ ( D, x_inv ) ] ) 

 

return self.__class__(F, D) 

 

return self.__class__(F, {t: D[t]._divide_if_possible(x) for t in D}) 

 

__div__ = __truediv__ 

 

 

class DifferentialWeylAlgebra(Algebra, UniqueRepresentation): 

r""" 

The differential Weyl algebra of a polynomial ring. 

 

Let `R` be a commutative ring. The (differential) Weyl algebra `W` is 

the algebra generated by `x_1, x_2, \ldots x_n, \partial_{x_1}, 

\partial_{x_2}, \ldots, \partial_{x_n}` subject to the relations: 

`[x_i, x_j] = 0`, `[\partial_{x_i}, \partial_{x_j}] = 0`, and 

`\partial_{x_i} x_j = x_j \partial_{x_i} + \delta_{ij}`. Therefore 

`\partial_{x_i}` is acting as the partial differential operator on `x_i`. 

 

The Weyl algebra can also be constructed as an iterated Ore extension 

of the polynomial ring `R[x_1, x_2, \ldots, x_n]` by adding `x_i` at 

each step. It can also be seen as a quantization of the symmetric algebra 

`Sym(V)`, where `V` is a finite dimensional vector space over a field 

of characteristic zero, by using a modified Groenewold-Moyal 

product in the symmetric algebra. 

 

The Weyl algebra (even for `n = 1`) over a field of characteristic 0 

has many interesting properties. 

 

- It's a non-commutative domain. 

- It's a simple ring (but not in positive characteristic) that is not 

a matrix ring over a division ring. 

- It has no finite-dimensional representations. 

- It's a quotient of the universal enveloping algebra of the 

Heisenberg algebra `\mathfrak{h}_n`. 

 

REFERENCES: 

 

- :wikipedia:`Weyl_algebra` 

 

INPUT: 

 

- ``R`` -- a (polynomial) ring 

- ``names`` -- (default: ``None``) if ``None`` and ``R`` is a 

polynomial ring, then the variable names correspond to 

those of ``R``; otherwise if ``names`` is specified, then ``R`` 

is the base ring 

 

EXAMPLES: 

 

There are two ways to create a Weyl algebra, the first is from 

a polynomial ring:: 

 

sage: R.<x,y,z> = QQ[] 

sage: W = DifferentialWeylAlgebra(R); W 

Differential Weyl algebra of polynomials in x, y, z over Rational Field 

 

We can call ``W.inject_variables()`` to give the polynomial ring 

variables, now as elements of ``W``, and the differentials:: 

 

sage: W.inject_variables() 

Defining x, y, z, dx, dy, dz 

sage: (dx * dy * dz) * (x^2 * y * z + x * z * dy + 1) 

x*z*dx*dy^2*dz + z*dy^2*dz + x^2*y*z*dx*dy*dz + dx*dy*dz 

+ x*dx*dy^2 + 2*x*y*z*dy*dz + dy^2 + x^2*z*dx*dz + x^2*y*dx*dy 

+ 2*x*z*dz + 2*x*y*dy + x^2*dx + 2*x 

 

Or directly by specifying a base ring and variable names:: 

 

sage: W.<a,b> = DifferentialWeylAlgebra(QQ); W 

Differential Weyl algebra of polynomials in a, b over Rational Field 

 

.. TODO:: 

 

Implement the :meth:`graded_algebra` as a polynomial ring once 

they are considered to be graded rings (algebras). 

""" 

@staticmethod 

def __classcall__(cls, R, names=None): 

""" 

Normalize input to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: W1.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: W2 = DifferentialWeylAlgebra(QQ['x,y,z']) 

sage: W1 is W2 

True 

""" 

if isinstance(R, (PolynomialRing_general, MPolynomialRing_generic)): 

if names is None: 

names = R.variable_names() 

R = R.base_ring() 

elif names is None: 

raise ValueError("the names must be specified") 

elif R not in Rings().Commutative(): 

raise TypeError("argument R must be a commutative ring") 

return super(DifferentialWeylAlgebra, cls).__classcall__(cls, R, names) 

 

def __init__(self, R, names=None): 

r""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: R.<x,y,z> = QQ[] 

sage: W = DifferentialWeylAlgebra(R) 

sage: TestSuite(W).run() 

""" 

self._n = len(names) 

self._poly_ring = PolynomialRing(R, names) 

names = names + tuple('d' + n for n in names) 

if len(names) != self._n * 2: 

raise ValueError("variable names cannot differ by a leading 'd'") 

# TODO: Make this into a filtered algebra under the natural grading of 

# x_i and dx_i have degree 1 

# Filtered is not included because it is a supercategory of super 

if R.is_field(): 

cat = AlgebrasWithBasis(R).NoZeroDivisors().Super() 

else: 

cat = AlgebrasWithBasis(R).Super() 

Algebra.__init__(self, R, names, category=cat) 

 

def _repr_(self): 

r""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: R.<x,y,z> = QQ[] 

sage: DifferentialWeylAlgebra(R) 

Differential Weyl algebra of polynomials in x, y, z over Rational Field 

""" 

poly_gens = ', '.join(repr(x) for x in self.gens()[:self._n]) 

return "Differential Weyl algebra of polynomials in {} over {}".format( 

poly_gens, self.base_ring()) 

 

def _element_constructor_(self, x): 

""" 

Construct an element of ``self`` from ``x``. 

 

EXAMPLES:: 

 

sage: R.<x,y,z> = QQ[] 

sage: W = DifferentialWeylAlgebra(R) 

sage: a = W(2); a 

2 

sage: a.parent() is W 

True 

sage: W(x^2 - y*z) 

-y*z + x^2 

""" 

t = tuple([0]*(self._n)) 

if x in self.base_ring(): 

if x == self.base_ring().zero(): 

return self.zero() 

return self.element_class(self, {(t, t): x}) 

if isinstance(x, DifferentialWeylAlgebraElement): 

R = self.base_ring() 

if x.parent().base_ring() is R: 

return self.element_class(self, dict(x)) 

zero = R.zero() 

return self.element_class(self, {i: R(c) for i,c in x if R(c) != zero}) 

x = self._poly_ring(x) 

return self.element_class(self, {(tuple(m), t): c 

for m,c in six.iteritems(x.dict())}) 

 

def _coerce_map_from_(self, R): 

""" 

Return data which determines if there is a coercion map 

from ``R`` to ``self``. 

 

If such a map exists, the output could be a map, callable, 

or ``True``, which constructs a generic map. Otherwise the output 

must be ``False`` or ``None``. 

 

EXAMPLES:: 

 

sage: R.<x,y,z> = QQ[] 

sage: W = DifferentialWeylAlgebra(R) 

sage: W._coerce_map_from_(R) 

True 

sage: W._coerce_map_from_(QQ) 

True 

sage: W._coerce_map_from_(ZZ['x']) 

True 

 

Order of the names matter:: 

 

sage: Wp = DifferentialWeylAlgebra(QQ['x,z,y']) 

sage: W.has_coerce_map_from(Wp) 

False 

sage: Wp.has_coerce_map_from(W) 

False 

 

Zero coordinates are handled appropriately:: 

 

sage: R.<x,y,z> = ZZ[] 

sage: W3 = DifferentialWeylAlgebra(GF(3)['x,y,z']) 

sage: W3.has_coerce_map_from(R) 

True 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(ZZ) 

sage: W3.has_coerce_map_from(W) 

True 

sage: W3(3*x + y) 

y 

""" 

if self._poly_ring.has_coerce_map_from(R): 

return True 

if isinstance(R, DifferentialWeylAlgebra): 

return ( R.variable_names() == self.variable_names() 

and self.base_ring().has_coerce_map_from(R.base_ring()) ) 

return super(DifferentialWeylAlgebra, self)._coerce_map_from_(R) 

 

def degree_on_basis(self, i): 

""" 

Return the degree of the basis element indexed by ``i``. 

 

EXAMPLES:: 

 

sage: W.<a,b> = DifferentialWeylAlgebra(QQ) 

sage: W.degree_on_basis( ((1, 3, 2), (0, 1, 3)) ) 

10 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: dx,dy,dz = W.differentials() 

sage: elt = y*dy - (3*x - z)*dx 

sage: elt.degree() 

2 

""" 

return sum(i[0]) + sum(i[1]) 

 

def polynomial_ring(self): 

""" 

Return the associated polynomial ring of ``self``. 

 

EXAMPLES:: 

 

sage: W.<a,b> = DifferentialWeylAlgebra(QQ) 

sage: W.polynomial_ring() 

Multivariate Polynomial Ring in a, b over Rational Field 

 

:: 

 

sage: R.<x,y,z> = QQ[] 

sage: W = DifferentialWeylAlgebra(R) 

sage: W.polynomial_ring() == R 

True 

""" 

return self._poly_ring 

 

@cached_method 

def basis(self): 

""" 

Return a basis of ``self``. 

 

EXAMPLES:: 

 

sage: W.<x,y> = DifferentialWeylAlgebra(QQ) 

sage: B = W.basis() 

sage: it = iter(B) 

sage: [next(it) for i in range(20)] 

[1, x, y, dx, dy, x^2, x*y, x*dx, x*dy, y^2, y*dx, y*dy, 

dx^2, dx*dy, dy^2, x^3, x^2*y, x^2*dx, x^2*dy, x*y^2] 

sage: dx, dy = W.differentials() 

sage: (dx*x).monomials() 

[1, x*dx] 

sage: B[(x*y).support()[0]] 

x*y 

sage: sorted((dx*x).monomial_coefficients().items()) 

[(((0, 0), (0, 0)), 1), (((1, 0), (1, 0)), 1)] 

""" 

n = self._n 

from sage.combinat.integer_lists.nn import IntegerListsNN 

elt_map = lambda u : (tuple(u[:n]), tuple(u[n:])) 

I = IntegerListsNN(length=2*n, element_constructor=elt_map) 

one = self.base_ring().one() 

f = lambda x: self.element_class(self, {(x[0], x[1]): one}) 

return Family(I, f, name="basis map") 

 

@cached_method 

def algebra_generators(self): 

""" 

Return the algebra generators of ``self``. 

 

.. SEEALSO:: 

 

:meth:`variables`, :meth:`differentials` 

 

EXAMPLES:: 

 

sage: R.<x,y,z> = QQ[] 

sage: W = DifferentialWeylAlgebra(R) 

sage: W.algebra_generators() 

Finite family {'dz': dz, 'dx': dx, 'dy': dy, 'y': y, 'x': x, 'z': z} 

""" 

d = {x: self.gen(i) for i,x in enumerate(self.variable_names())} 

return Family(self.variable_names(), lambda x: d[x]) 

 

@cached_method 

def variables(self): 

""" 

Return the variables of ``self``. 

 

.. SEEALSO:: 

 

:meth:`algebra_generators`, :meth:`differentials` 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: W.variables() 

Finite family {'y': y, 'x': x, 'z': z} 

""" 

N = self.variable_names()[:self._n] 

d = {x: self.gen(i) for i,x in enumerate(N) } 

return Family(N, lambda x: d[x]) 

 

@cached_method 

def differentials(self): 

""" 

Return the differentials of ``self``. 

 

.. SEEALSO:: 

 

:meth:`algebra_generators`, :meth:`variables` 

 

EXAMPLES:: 

 

sage: W.<x,y,z> = DifferentialWeylAlgebra(QQ) 

sage: W.differentials() 

Finite family {'dz': dz, 'dx': dx, 'dy': dy} 

""" 

N = self.variable_names()[self._n:] 

d = {x: self.gen(self._n+i) for i,x in enumerate(N) } 

return Family(N, lambda x: d[x]) 

 

def gen(self, i): 

""" 

Return the ``i``-th generator of ``self``. 

 

.. SEEALSO:: 

 

:meth:`algebra_generators` 

 

EXAMPLES:: 

 

sage: R.<x,y,z> = QQ[] 

sage: W = DifferentialWeylAlgebra(R) 

sage: [W.gen(i) for i in range(6)] 

[x, y, z, dx, dy, dz] 

""" 

P = [0] * self._n 

D = [0] * self._n 

if i < self._n: 

P[i] = 1 

else: 

D[i-self._n] = 1 

return self.element_class(self, {(tuple(P), tuple(D)): self.base_ring().one()} ) 

 

def ngens(self): 

""" 

Return the number of generators of ``self``. 

 

EXAMPLES:: 

 

sage: R.<x,y,z> = QQ[] 

sage: W = DifferentialWeylAlgebra(R) 

sage: W.ngens() 

6 

""" 

return self._n*2 

 

@cached_method 

def one(self): 

""" 

Return the multiplicative identity element `1`. 

 

EXAMPLES:: 

 

sage: R.<x,y,z> = QQ[] 

sage: W = DifferentialWeylAlgebra(R) 

sage: W.one() 

1 

""" 

t = tuple([0]*self._n) 

return self.element_class( self, {(t, t): self.base_ring().one()} ) 

 

@cached_method 

def zero(self): 

""" 

Return the additive identity element `0`. 

 

EXAMPLES:: 

 

sage: R.<x,y,z> = QQ[] 

sage: W = DifferentialWeylAlgebra(R) 

sage: W.zero() 

0 

""" 

return self.element_class(self, {}) 

 

Element = DifferentialWeylAlgebraElement