Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

""" 

Yokonuma-Hecke Algebras 

 

AUTHORS: 

 

- Travis Scrimshaw (2015-11): initial version 

""" 

 

#***************************************************************************** 

# Copyright (C) 2015 Travis Scrimshaw <tscrimsh at umn.edu> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.misc.cachefunc import cached_method 

from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing 

from sage.rings.all import QQ 

from sage.categories.algebras import Algebras 

from sage.categories.rings import Rings 

from sage.combinat.free_module import CombinatorialFreeModule 

from sage.combinat.permutation import Permutations 

from sage.sets.family import Family 

 

class YokonumaHeckeAlgebra(CombinatorialFreeModule): 

r""" 

The Yokonuma-Hecke algebra `Y_{d,n}(q)`. 

 

Let `R` be a commutative ring and `q` be a unit in `R`. The 

*Yokonuma-Hecke algebra* `Y_{d,n}(q)` is the associative, unital 

`R`-algebra generated by `t_1, t_2, \ldots, t_n, g_1, g_2, \ldots, 

g_{n-1}` and subject to the relations: 

 

- `g_i g_j = g_j g_i` for all `|i - j| > 1`, 

- `g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1}`, 

- `t_i t_j = t_j t_i`, 

- `t_j g_i = g_i t_{j s_i}`, and 

- `t_j^d = 1`, 

 

where `s_i` is the simple transposition `(i, i+1)`, along with 

the quadratic relation 

 

.. MATH:: 

 

g_i^2 = 1 + \frac{(q - q^{-1})}{d} \left( \sum_{s=0}^{d-1} 

t_i^s t_{i+1}^{-s} \right) g_i. 

 

Thus the Yokonuma-Hecke algebra can be considered a quotient of 

the framed braid group `(\ZZ / d\ZZ) \wr B_n`, where `B_n` is the 

classical braid group on `n` strands, by the quadratic relations. 

Moreover, all of the algebra generators are invertible. In 

particular, we have 

 

.. MATH:: 

 

g_i^{-1} = g_i - (q - q^{-1}) e_i. 

 

When we specialize `q = \pm 1`, we obtain the group algebra of 

the complex reflection group `G(d, 1, n) = (\ZZ / d\ZZ) \wr S_n`. 

Moreover for `d = 1`, the Yokonuma-Hecke algebra is equal to the 

:class:`Iwahori-Hecke <IwahoriHeckeAlgebra>` of type `A_{n-1}`. 

 

INPUT: 

 

- ``d`` -- the maximum power of `t` 

- ``n`` -- the number of generators 

- ``q`` -- (optional) an invertible element in a commutative ring; 

the default is `q \in \QQ[q,q^{-1}]` 

- ``R`` -- (optional) a commutative ring containing ``q``; the 

default is the parent of `q` 

 

EXAMPLES: 

 

We construct `Y_{4,3}` and do some computations:: 

 

sage: Y = algebras.YokonumaHecke(4, 3) 

sage: g1, g2, t1, t2, t3 = Y.algebra_generators() 

sage: g1 * g2 

g[1,2] 

sage: t1 * g1 

t1*g[1] 

sage: g2 * t2 

t3*g[2] 

sage: g2 * t3 

t2*g[2] 

sage: (g2 + t1) * (g1 + t2*t3) 

g[2,1] + t2*t3*g[2] + t1*g[1] + t1*t2*t3 

sage: g1 * g1 

1 - (1/4*q^-1-1/4*q)*g[1] - (1/4*q^-1-1/4*q)*t1*t2^3*g[1] 

- (1/4*q^-1-1/4*q)*t1^2*t2^2*g[1] - (1/4*q^-1-1/4*q)*t1^3*t2*g[1] 

sage: g2 * g1 * t1 

t3*g[2,1] 

 

We construct the elements `e_i` and show that they are idempotents:: 

 

sage: e1 = Y.e(1); e1 

1/4 + 1/4*t1*t2^3 + 1/4*t1^2*t2^2 + 1/4*t1^3*t2 

sage: e1 * e1 == e1 

True 

sage: e2 = Y.e(2); e2 

1/4 + 1/4*t2*t3^3 + 1/4*t2^2*t3^2 + 1/4*t2^3*t3 

sage: e2 * e2 == e2 

True 

 

REFERENCES: 

 

- [CL2013]_ 

 

- [CPdA2014]_ 

 

- [ERH2015]_ 

 

- [JPdA15]_ 

""" 

@staticmethod 

def __classcall_private__(cls, d, n, q=None, R=None): 

""" 

Standardize input to ensure a unique representation. 

 

TESTS:: 

 

sage: Y1 = algebras.YokonumaHecke(5, 3) 

sage: q = LaurentPolynomialRing(QQ, 'q').gen() 

sage: Y2 = algebras.YokonumaHecke(5, 3, q) 

sage: Y3 = algebras.YokonumaHecke(5, 3, q, q.parent()) 

sage: Y1 is Y2 and Y2 is Y3 

True 

""" 

if q is None: 

q = LaurentPolynomialRing(QQ, 'q').gen() 

if R is None: 

R = q.parent() 

q = R(q) 

if R not in Rings().Commutative(): 

raise TypeError("base ring must be a commutative ring") 

return super(YokonumaHeckeAlgebra, cls).__classcall__(cls, d, n, q, R) 

 

def __init__(self, d, n, q, R): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(5, 3) 

sage: elts = Y.some_elements() + list(Y.algebra_generators()) 

sage: TestSuite(Y).run(elements=elts) 

""" 

self._d = d 

self._n = n 

self._q = q 

self._Pn = Permutations(n) 

import itertools 

C = itertools.product(*([range(d)]*n)) 

indices = list( itertools.product(C, self._Pn)) 

cat = Algebras(R).WithBasis() 

CombinatorialFreeModule.__init__(self, R, indices, prefix='Y', 

category=cat) 

self._assign_names(self.algebra_generators().keys()) 

 

def _repr_(self): 

"""  

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: algebras.YokonumaHecke(5, 2) 

Yokonuma-Hecke algebra of rank 5 and order 2 with q=q 

over Univariate Laurent Polynomial Ring in q over Rational Field 

""" 

return "Yokonuma-Hecke algebra of rank {} and order {} with q={} over {}".format( 

self._d, self._n, self._q, self.base_ring()) 

 

def _latex_(self): 

r""" 

Return a latex representation of ``self``. 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(5, 2) 

sage: latex(Y) 

\mathcal{Y}_{5,2}(q) 

""" 

return "\\mathcal{Y}_{%s,%s}(%s)"%(self._d, self._n, self._q) 

 

def _repr_term(self, m): 

""" 

Return a string representation of the basis element indexed by ``m``. 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(4, 3) 

sage: Y._repr_term( ((1, 0, 2), Permutation([3,2,1])) ) 

't1*t3^2*g[2,1,2]' 

""" 

gen_str = lambda e: '' if e == 1 else '^%s'%e 

lhs = '*'.join('t%s'%(j+1) + gen_str(i) for j,i in enumerate(m[0]) if i > 0) 

redword = m[1].reduced_word() 

if not redword: 

if not lhs: 

return '1' 

return lhs 

rhs = 'g[{}]'.format(','.join(str(i) for i in redword)) 

if not lhs: 

return rhs 

return lhs + '*' + rhs 

 

def _latex_term(self, m): 

r""" 

Return a latex representation for the basis element indexed by ``m``. 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(4, 3) 

sage: Y._latex_term( ((1, 0, 2), Permutation([3,2,1])) ) 

't_{1} t_{3}^2 g_{2} g_{1} g_{2}' 

""" 

gen_str = lambda e: '' if e == 1 else '^%s'%e 

lhs = ' '.join('t_{%s}'%(j+1) + gen_str(i) for j,i in enumerate(m[0]) if i > 0) 

redword = m[1].reduced_word() 

if not redword: 

if not lhs: 

return '1' 

return lhs 

return lhs + ' ' + ' '.join("g_{%d}"%i for i in redword) 

 

@cached_method 

def algebra_generators(self): 

""" 

Return the algebra generators of ``self``. 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(5, 3) 

sage: dict(Y.algebra_generators()) 

{'g1': g[1], 'g2': g[2], 't1': t1, 't2': t2, 't3': t3} 

""" 

one = self._Pn.one() 

zero = [0]*self._n 

d = {} 

for i in range(self._n): 

r = list(zero) # Make a copy 

r[i] = 1 

d['t%s'%(i+1)] = self.monomial( (tuple(r), one) ) 

G = self._Pn.group_generators() 

for i in range(1, self._n): 

d['g%s'%i] = self.monomial( (tuple(zero), G[i]) ) 

return Family(sorted(d), lambda i: d[i]) 

 

@cached_method 

def gens(self): 

""" 

Return the generators of ``self``. 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(5, 3) 

sage: Y.gens() 

(g[1], g[2], t1, t2, t3) 

""" 

return tuple(self.algebra_generators()) 

 

@cached_method 

def one_basis(self): 

""" 

Return the index of the basis element of `1`. 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(5, 3) 

sage: Y.one_basis() 

((0, 0, 0), [1, 2, 3]) 

""" 

one = self._Pn.one() 

zero = [0]*self._n 

return (tuple(zero), one) 

 

@cached_method 

def e(self, i): 

""" 

Return the element `e_i`. 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(4, 3) 

sage: Y.e(1) 

1/4 + 1/4*t1*t2^3 + 1/4*t1^2*t2^2 + 1/4*t1^3*t2 

sage: Y.e(2) 

1/4 + 1/4*t2*t3^3 + 1/4*t2^2*t3^2 + 1/4*t2^3*t3 

""" 

if i < 1 or i >= self._n: 

raise ValueError("invalid index") 

c = ~self.base_ring()(self._d) 

zero = [0]*self._n 

one = self._Pn.one() 

d = {} 

for s in range(self._d): 

r = list(zero) # Make a copy 

r[i-1] = s 

if s != 0: 

r[i] = self._d - s 

d[(tuple(r), one)] = c 

return self._from_dict(d, remove_zeros=False) 

 

def g(self, i=None): 

""" 

Return the generator(s) `g_i`. 

 

INPUT: 

 

- ``i`` -- (default: ``None``) the generator `g_i` or if ``None``, 

then the list of all generators `g_i` 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(8, 3) 

sage: Y.g(1) 

g[1] 

sage: Y.g() 

[g[1], g[2]] 

""" 

G = self.algebra_generators() 

if i is None: 

return [G['g%s'%i] for i in range(1, self._n)] 

return G['g%s'%i] 

 

def t(self, i=None): 

""" 

Return the generator(s) `t_i`. 

 

INPUT: 

 

- ``i`` -- (default: ``None``) the generator `t_i` or if ``None``, 

then the list of all generators `t_i` 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(8, 3) 

sage: Y.t(2) 

t2 

sage: Y.t() 

[t1, t2, t3] 

""" 

G = self.algebra_generators() 

if i is None: 

return [G['t%s'%i] for i in range(1, self._n+1)] 

return G['t%s'%i] 

 

def product_on_basis(self, m1, m2): 

""" 

Return the product of the basis elements indexed by ``m1`` and ``m2``. 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(4, 3) 

sage: m = ((1, 0, 2), Permutations(3)([2,1,3])) 

sage: 4 * Y.product_on_basis(m, m) 

-(q^-1-q)*t2^2*g[1] + 4*t1*t2 - (q^-1-q)*t1*t2*g[1] 

- (q^-1-q)*t1^2*g[1] - (q^-1-q)*t1^3*t2^3*g[1] 

 

Check that we apply the permutation correctly on `t_i`:: 

 

sage: Y = algebras.YokonumaHecke(4, 3) 

sage: g1, g2, t1, t2, t3 = Y.algebra_generators() 

sage: g21 = g2 * g1 

sage: g21 * t1 

t3*g[2,1] 

""" 

t1,g1 = m1 

t2,g2 = m2 

# Commmute g1 and t2, then multiply t1 and t2 

#ig1 = g1 

t = [(t1[i] + t2[g1.index(i+1)]) % self._d for i in range(self._n)] 

one = self._Pn.one() 

if g1 == one: 

return self.monomial((tuple(t), g2)) 

ret = self.monomial((tuple(t), g1)) 

# We have to reverse the reduced word due to Sage's convention 

# for permutation multiplication 

for i in g2.reduced_word(): 

ret = self.linear_combination((self._product_by_basis_gen(m, i), c) 

for m,c in ret) 

return ret 

 

def _product_by_basis_gen(self, m, i): 

r""" 

Return the product `t g_w g_i`. 

 

If the quadratic relation is `g_i^2 = 1 + (q + q^{-1})e_i g_i`, 

then we have 

 

.. MATH:: 

 

g_w g_i = \begin{cases} 

g_{ws_i} & \text{if } \ell(ws_i) = \ell(w) + 1, \\ 

g_{ws_i} - (q - q^{-1}) g_w e_i & \text{if } 

\ell(w s_i) = \ell(w) - 1. 

\end{cases} 

 

INPUT: 

 

- ``m`` -- a pair ``[t, w]``, where ``t`` encodes the monomial 

and ``w`` is an element of the permutation group 

- ``i`` -- an element of the index set 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(4, 3) 

sage: m = ((1, 0, 2), Permutations(3)([2,1,3])) 

sage: 4 * Y._product_by_basis_gen(m, 1) 

-(q^-1-q)*t2*t3^2*g[1] + 4*t1*t3^2 - (q^-1-q)*t1*t3^2*g[1] 

- (q^-1-q)*t1^2*t2^3*t3^2*g[1] - (q^-1-q)*t1^3*t2^2*t3^2*g[1] 

""" 

t, w = m 

# We have to flip the side due to Sage's multiplication 

# convention for permutations 

wi = w.apply_simple_reflection(i, side="left") 

if not w.has_descent(i, side="left"): 

return self.monomial((t, wi)) 

 

R = self.base_ring() 

c = (self._q - ~self._q) * ~R(self._d) 

d = {(t, wi): R.one()} 

# We commute g_w and e_i and then multiply by t 

for s in range(self._d): 

r = list(t) 

r[w[i-1]-1] = (r[w[i-1]-1] + s) % self._d 

if s != 0: 

r[w[i]-1] = (r[w[i]-1] + self._d - s) % self._d 

d[(tuple(r), w)] = c 

return self._from_dict(d, remove_zeros=False) 

 

@cached_method 

def inverse_g(self, i): 

r""" 

Return the inverse of the generator `g_i`. 

 

From the quadratic relation, we have 

 

.. MATH:: 

 

g_i^{-1} = g_i - (q - q^{-1}) e_i. 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(2, 4) 

sage: [2*Y.inverse_g(i) for i in range(1, 4)] 

[(q^-1+q) + 2*g[1] + (q^-1+q)*t1*t2, 

(q^-1+q) + 2*g[2] + (q^-1+q)*t2*t3, 

(q^-1+q) + 2*g[3] + (q^-1+q)*t3*t4] 

""" 

if i < 1 or i >= self._n: 

raise ValueError("invalid index") 

return self.g(i) + (~self._q + self._q) * self.e(i) 

 

class Element(CombinatorialFreeModule.Element): 

def inverse(self): 

r""" 

Return the inverse if ``self`` is a basis element. 

 

EXAMPLES:: 

 

sage: Y = algebras.YokonumaHecke(3, 3) 

sage: t = prod(Y.t()); t 

t1*t2*t3 

sage: ~t 

t1^2*t2^2*t3^2 

sage: [3*~(t*g) for g in Y.g()] 

[(q^-1+q)*t2*t3^2 + (q^-1+q)*t1*t3^2 

+ (q^-1+q)*t1^2*t2^2*t3^2 + 3*t1^2*t2^2*t3^2*g[1], 

(q^-1+q)*t1^2*t3 + (q^-1+q)*t1^2*t2 

+ (q^-1+q)*t1^2*t2^2*t3^2 + 3*t1^2*t2^2*t3^2*g[2]] 

""" 

if len(self) != 1: 

raise NotImplementedError("inverse only implemented for basis elements (monomials in the generators)"%self) 

H = self.parent() 

t,w = self.support_of_term() 

telt = H.monomial( (tuple((H._d - e) % H._d for e in t), H._Pn.one()) ) 

return telt * H.prod(H.inverse_g(i) for i in reversed(w.reduced_word())) 

 

__invert__ = inverse