Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

r""" 

Solving ODE numerically by GSL 

  

AUTHORS: 

  

- Joshua Kantor (2004-2006) 

  

- Robert Marik (2010 - fixed docstrings) 

  

""" 

  

#***************************************************************************** 

# Copyright (C) 2004,2005,2006 Joshua Kantor <kantor.jm@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import absolute_import 

  

from cysignals.memory cimport sig_malloc, sig_free 

from cysignals.signals cimport sig_on, sig_off 

  

from sage.libs.gsl.all cimport * 

import sage.calculus.interpolation 

  

  

cdef class PyFunctionWrapper: 

cdef object the_function 

cdef object the_jacobian 

cdef object the_parameters 

cdef int y_n 

  

cdef set_yn(self,x): 

self.y_n = x 

  

cdef class ode_system: 

cdef int c_j(self,double t, double *y, double *dfdy,double *dfdt): #void *params): 

return 0 

  

cdef int c_f(self,double t, double* y, double* dydt): #void *params): 

return 0 

  

cdef int c_jac_compiled(double t, double *y, double *dfdy,double *dfdt, void * params): 

cdef int status 

cdef ode_system wrapper 

wrapper = <ode_system> params 

status = wrapper.c_j(t,y,dfdy,dfdt) #Could add parameters 

return status 

  

cdef int c_f_compiled(double t, double *y, double *dydt, void *params): 

cdef int status 

cdef ode_system wrapper 

wrapper = <ode_system> params 

status = wrapper.c_f(t,y,dydt) #Could add parameters 

return status 

  

cdef int c_jac(double t,double *y,double *dfdy,double *dfdt,void *params): 

cdef int i 

cdef int j 

cdef int y_n 

cdef int param_n 

cdef PyFunctionWrapper wrapper 

wrapper = <PyFunctionWrapper > params 

y_n=wrapper.y_n 

y_list=[] 

for i from 0<=i<y_n: 

y_list.append(y[i]) 

try: 

if len(wrapper.the_parameters)==0: 

jac_list=wrapper.the_jacobian(t,y_list) 

else: 

jac_list=wrapper.the_jacobian(t,y_list,wrapper.the_parameters) 

for i from 0<=i<y_n: 

for j from 0<=j<y_n: 

dfdy[i*y_n+j]=jac_list[i][j] 

  

for i from 0 <=i<y_n: 

dfdt[i]=jac_list[y_n][i] 

  

return GSL_SUCCESS 

except Exception: 

return -1 

  

cdef int c_f(double t,double* y, double* dydt,void *params): 

cdef int i 

cdef int y_n 

cdef int param_n 

  

cdef PyFunctionWrapper wrapper 

wrapper = <PyFunctionWrapper> params 

y_n= wrapper.y_n 

y_list=[] 

for i from 0<=i<y_n: 

y_list.append(y[i]) 

try: 

if len(wrapper.the_parameters)!=0: 

dydt_list=wrapper.the_function(t,y_list,wrapper.the_parameters) 

else: 

dydt_list=wrapper.the_function(t,y_list) 

for i from 0<=i<y_n: 

dydt[i]=dydt_list[i] 

return GSL_SUCCESS 

except Exception: 

return -1 

  

class ode_solver(object): 

r""" 

:meth:`ode_solver` is a class that wraps the GSL libraries ode 

solver routines To use it instantiate a class,:: 

  

sage: T=ode_solver() 

  

To solve a system of the form ``dy_i/dt=f_i(t,y)``, you must 

supply a vector or tuple/list valued function ``f`` representing 

``f_i``. The functions ``f`` and the jacobian should have the 

form ``foo(t,y)`` or ``foo(t,y,params)``. ``params`` which is 

optional allows for your function to depend on one or a tuple of 

parameters. Note if you use it, ``params`` must be a tuple even 

if it only has one component. For example if you wanted to solve 

`y''+y=0`. You need to write it as a first order system:: 

  

y_0' = y_1 

y_1' = -y_0 

  

In code:: 

  

sage: f = lambda t,y:[y[1],-y[0]] 

sage: T.function=f 

  

For some algorithms the jacobian must be supplied as well, the 

form of this should be a function return a list of lists of the 

form ``[ [df_1/dy_1,...,df_1/dy_n], ..., 

[df_n/dy_1,...,df_n,dy_n], [df_1/dt,...,df_n/dt] ]``. 

  

There are examples below, if your jacobian was the function 

``my_jacobian`` you would do:: 

  

sage: T.jacobian = my_jacobian # not tested, since it doesn't make sense to test this 

  

There are a variety of algorithms available for different types of systems. Possible algorithms are 

  

- ``rkf45`` - runga-kutta-felhberg (4,5) 

  

- ``rk2`` - embedded runga-kutta (2,3) 

  

- ``rk4`` - 4th order classical runga-kutta 

  

- ``rk8pd`` - runga-kutta prince-dormand (8,9) 

  

- ``rk2imp`` - implicit 2nd order runga-kutta at gaussian points 

  

- ``rk4imp`` - implicit 4th order runga-kutta at gaussian points 

  

- ``bsimp`` - implicit burlisch-stoer (requires jacobian) 

  

- ``gear1`` - M=1 implicit gear 

  

- ``gear2`` - M=2 implicit gear 

  

The default algorithm is ``rkf45``. If you instead wanted to use 

``bsimp`` you would do:: 

  

sage: T.algorithm="bsimp" 

  

The user should supply initial conditions in y_0. For example if 

your initial conditions are y_0=1,y_1=1, do:: 

  

sage: T.y_0=[1,1] 

  

The actual solver is invoked by the method :meth:`ode_solve`. It 

has arguments ``t_span``, ``y_0``, ``num_points``, ``params``. 

``y_0`` must be supplied either as an argument or above by 

assignment. Params which are optional and only necessary if your 

system uses params can be supplied to ``ode_solve`` or by 

assignment. 

  

``t_span`` is the time interval on which to solve the ode. There 

are two ways to specify ``t_span``: 

  

* If ``num_points`` is not specified then the sequence ``t_span`` 

is used as the time points for the solution. Note that the 

first element ``t_span[0]`` is the initial time, where the 

initial condition ``y_0`` is the specified solution, and 

subsequent elements are the ones where the solution is computed. 

  

* If ``num_points`` is specified and ``t_span`` is a sequence with 

just 2 elements, then these are the starting and ending times, 

and the solution will be computed at ``num_points`` equally 

spaced points between ``t_span[0]`` and ``t_span[1]``. The 

initial condition is also included in the output so that 

``num_points``\ +1 total points are returned. E.g. if ``t_span 

= [0.0, 1.0]`` and ``num_points = 10``, then solution is 

returned at the 11 time points ``[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9, 1.0]``\ . 

  

(Note that if ``num_points`` is specified and ``t_span`` is not 

length 2 then ``t_span`` are used as the time points and 

``num_points`` is ignored.) 

  

Error is estimated via the expression ``D_i = 

error_abs*s_i+error_rel*(a|y_i|+a_dydt*h*|y_i'|)``. The user can 

specify ``error_abs`` (1e-10 by default), ``error_rel`` (1e-10 by 

default) ``a`` (1 by default), ``a_(dydt)`` (0 by default) and 

``s_i`` (as scaling_abs which should be a tuple and is 1 in all 

components by default). If you specify one of ``a`` or ``a_dydt`` 

you must specify the other. You may specify ``a`` and ``a_dydt`` 

without ``scaling_abs`` (which will be taken =1 be default). 

``h`` is the initial step size which is (1e-2) by default. 

  

``ode_solve`` solves the solution as a list of tuples of the form, 

``[ (t_0,[y_1,...,y_n]),(t_1,[y_1,...,y_n]),...,(t_n,[y_1,...,y_n])]``. 

  

This data is stored in the variable solutions:: 

  

sage: T.solution # not tested 

  

EXAMPLES: 

  

Consider solving the Van der Pol oscillator `x''(t) + 

ux'(t)(x(t)^2-1)+x(t)=0` between `t=0` and `t= 100`. As a first 

order system it is `x'=y`, `y'=-x+uy(1-x^2)`. Let us take `u=10` 

and use initial conditions `(x,y)=(1,0)` and use the runga-kutta 

prince-dormand algorithm. :: 

  

sage: def f_1(t,y,params): 

....: return[y[1],-y[0]-params[0]*y[1]*(y[0]**2-1.0)] 

  

sage: def j_1(t,y,params): 

....: return [ [0.0, 1.0],[-2.0*params[0]*y[0]*y[1]-1.0,-params[0]*(y[0]*y[0]-1.0)], [0.0, 0.0] ] 

  

sage: T=ode_solver() 

sage: T.algorithm="rk8pd" 

sage: T.function=f_1 

sage: T.jacobian=j_1 

sage: T.ode_solve(y_0=[1,0],t_span=[0,100],params=[10.0],num_points=1000) 

sage: outfile = os.path.join(SAGE_TMP, 'sage.png') 

sage: T.plot_solution(filename=outfile) 

  

The solver line is equivalent to:: 

  

sage: T.ode_solve(y_0=[1,0],t_span=[x/10.0 for x in range(1000)],params = [10.0]) 

  

Let's try a system:: 

  

y_0'=y_1*y_2 

y_1'=-y_0*y_2 

y_2'=-.51*y_0*y_1 

  

We will not use the jacobian this time and will change the 

error tolerances. :: 

  

sage: g_1= lambda t,y: [y[1]*y[2],-y[0]*y[2],-0.51*y[0]*y[1]] 

sage: T.function=g_1 

sage: T.y_0=[0,1,1] 

sage: T.scale_abs=[1e-4,1e-4,1e-5] 

sage: T.error_rel=1e-4 

sage: T.ode_solve(t_span=[0,12],num_points=100) 

  

By default T.plot_solution() plots the y_0, to plot general y_i use:: 

  

sage: T.plot_solution(i=0, filename=outfile) 

sage: T.plot_solution(i=1, filename=outfile) 

sage: T.plot_solution(i=2, filename=outfile) 

  

The method interpolate_solution will return a spline interpolation 

through the points found by the solver. By default y_0 is 

interpolated. You can interpolate y_i through the keyword 

argument i. :: 

  

sage: f = T.interpolate_solution() 

sage: plot(f,0,12).show() 

sage: f = T.interpolate_solution(i=1) 

sage: plot(f,0,12).show() 

sage: f = T.interpolate_solution(i=2) 

sage: plot(f,0,12).show() 

sage: f = T.interpolate_solution() 

sage: f(pi) 

0.5379... 

  

The solver attributes may also be set up using arguments to 

ode_solver. The previous example can be rewritten as:: 

  

sage: T = ode_solver(g_1,y_0=[0,1,1],scale_abs=[1e-4,1e-4,1e-5],error_rel=1e-4, algorithm="rk8pd") 

sage: T.ode_solve(t_span=[0,12],num_points=100) 

sage: f = T.interpolate_solution() 

sage: f(pi) 

0.5379... 

  

Unfortunately because Python functions are used, this solver 

is slow on systems that require many function evaluations. It 

is possible to pass a compiled function by deriving from the 

class ``ode_sysem`` and overloading ``c_f`` and ``c_j`` with C 

functions that specify the system. The following will work in the 

notebook: 

  

.. code-block:: cython 

  

%cython 

cimport sage.calculus.ode 

import sage.calculus.ode 

from sage.libs.gsl.all cimport * 

  

cdef class van_der_pol(sage.calculus.ode.ode_system): 

cdef int c_f(self,double t, double *y,double *dydt): 

dydt[0]=y[1] 

dydt[1]=-y[0]-1000*y[1]*(y[0]*y[0]-1) 

return GSL_SUCCESS 

cdef int c_j(self, double t,double *y,double *dfdy,double *dfdt): 

dfdy[0]=0 

dfdy[1]=1.0 

dfdy[2]=-2.0*1000*y[0]*y[1]-1.0 

dfdy[3]=-1000*(y[0]*y[0]-1.0) 

dfdt[0]=0 

dfdt[1]=0 

return GSL_SUCCESS 

  

After executing the above block of code you can do the 

following (WARNING: the following is *not* automatically 

doctested):: 

  

sage: T = ode_solver() # not tested 

sage: T.algorithm = "bsimp" # not tested 

sage: vander = van_der_pol() # not tested 

sage: T.function=vander # not tested 

sage: T.ode_solve(y_0 = [1,0], t_span=[0,2000], num_points=1000) # not tested 

sage: T.plot_solution(i=0, filename=os.path.join(SAGE_TMP, 'test.png')) # not tested 

  

  

""" 

def __init__(self,function=None,jacobian=None,h = 1e-2,error_abs=1e-10,error_rel=1e-10, a=False,a_dydt=False,scale_abs=False,algorithm="rkf45",y_0=None,t_span=None,params = []): 

self.function = function 

self.jacobian = jacobian 

self.h = h 

self.error_abs = error_abs 

self.error_rel = error_rel 

self.a = a 

self.a_dydt = a_dydt 

self.scale_abs = scale_abs 

self.algorithm = algorithm 

self.y_0 = y_0 

self.t_span = t_span 

self.params = params 

self.solution = [] 

  

def __setattr__(self,name,value): 

if(hasattr(self,'solution')): 

object.__setattr__(self,'solution',[]) 

object.__setattr__(self,name,value) 

  

def interpolate_solution(self,i=0): 

pts = [(t,y[i]) for t,y in self.solution] 

return sage.calculus.interpolation.spline(pts) 

  

def plot_solution(self, i=0, filename=None, interpolate=False, **kwds): 

r""" 

Plot a one dimensional projection of the solution. 

  

INPUT: 

  

- ``i`` -- (non-negative integer) composant of the projection 

  

- ``filename`` -- (string or ``None``) whether to plot the picture or 

save it in a file 

  

- ``interpolate`` -- whether to interpolate between the points of the 

discretized solution 

  

- additional keywords are passed to the graphics primitive 

  

EXAMPLES:: 

  

sage: T = ode_solver() 

sage: T.function = lambda t,y: [cos(y[0]) * sin(t)] 

sage: T.jacobian = lambda t,y: [[-sin(y[0]) * sin(t)]] 

sage: T.ode_solve(y_0=[1],t_span=[0,20],num_points=1000) 

sage: T.plot_solution() 

  

And with some options:: 

  

sage: T.plot_solution(color='red', axes_labels=["t", "x(t)"]) 

""" 

if interpolate: 

from sage.plot.line import line2d 

pts = self.interpolate_solution(i) 

G = line2d(pts, **kwds) 

else: 

pts = [(t,y[i]) for t,y in self.solution] 

from sage.plot.point import point2d 

G = point2d([(t,y[i]) for t,y in self.solution], **kwds) 

if filename is None: 

G.show() 

else: 

G.save(filename=filename) 

  

def ode_solve(self,t_span=False,y_0=False,num_points=False,params=[]): 

import inspect 

cdef double h # step size 

h=self.h 

cdef int i 

cdef int j 

cdef int type 

cdef int dim 

cdef PyFunctionWrapper wrapper #struct to pass information into GSL C function 

self.params=params 

  

if t_span: 

self.t_span = t_span 

if y_0: 

self.y_0 = y_0 

  

dim = len(self.y_0) 

type = isinstance(self.function,ode_system) 

if type == 0: 

wrapper = PyFunctionWrapper() 

if self.function is not None: 

wrapper.the_function = self.function 

else: 

raise ValueError("ODE system not yet defined") 

if self.jacobian is None: 

wrapper.the_jacobian = None 

else: 

wrapper.the_jacobian = self.jacobian 

if self.params==[] and len(inspect.getargspec(wrapper.the_function)[0])==2: 

wrapper.the_parameters=[] 

elif self.params==[] and len(inspect.getargspec(wrapper.the_function)[0])>2: 

raise ValueError("ODE system has a parameter but no parameters specified") 

elif self.params!=[]: 

wrapper.the_parameters = self.params 

wrapper.y_n = dim 

  

  

cdef double t 

cdef double t_end 

cdef double *y 

cdef double * scale_abs_array 

scale_abs_array=NULL 

  

y= <double*> sig_malloc(sizeof(double)*(dim)) 

if y==NULL: 

raise MemoryError("error allocating memory") 

result=[] 

v=[0]*dim 

cdef gsl_odeiv_step_type * T 

  

for i from 0 <=i< dim: #copy initial conditions into C array 

y[i]=self.y_0[i] 

  

if self.algorithm == "rkf45": 

T=gsl_odeiv_step_rkf45 

elif self.algorithm == "rk2": 

T=gsl_odeiv_step_rk2 

elif self.algorithm == "rk4": 

T=gsl_odeiv_step_rk4 

elif self.algorithm == "rkck": 

T=gsl_odeiv_step_rkck 

elif self.algorithm == "rk8pd": 

T=gsl_odeiv_step_rk8pd 

elif self.algorithm == "rk2imp": 

T= gsl_odeiv_step_rk2imp 

elif self.algorithm == "rk4imp": 

T= gsl_odeiv_step_rk4imp 

elif self.algorithm == "bsimp": 

T = gsl_odeiv_step_bsimp 

if not type and self.jacobian is None: 

raise TypeError("The jacobian must be provided for the implicit Burlisch-Stoer method") 

elif self.algorithm == "gear1": 

T = gsl_odeiv_step_gear1 

elif self.algorithm == "gear2": 

T = gsl_odeiv_step_gear2 

else: 

raise TypeError("algorithm not valid") 

  

  

cdef gsl_odeiv_step * s 

s = gsl_odeiv_step_alloc (T, dim) 

if s==NULL: 

sig_free(y) 

raise MemoryError("error setting up solver") 

  

  

cdef gsl_odeiv_control * c 

  

if not self.a and not self.a_dydt: 

c = gsl_odeiv_control_y_new (self.error_abs, self.error_rel) 

elif self.a and self.a_dydt: 

if not self.scale_abs: 

c = gsl_odeiv_control_standard_new(self.error_abs,self.error_rel,self.a,self.a_dydt) 

elif hasattr(self.scale_abs,'__len__'): 

if len(self.scale_abs)==dim: 

scale_abs_array =<double *> sig_malloc(dim*sizeof(double)) 

for i from 0 <=i<dim: 

scale_abs_array[i]=self.scale_abs[i] 

c = gsl_odeiv_control_scaled_new(self.error_abs,self.error_rel,self.a,self.a_dydt,scale_abs_array,dim) 

  

if c == NULL: 

gsl_odeiv_control_free (c) 

gsl_odeiv_step_free (s) 

sig_free(y) 

sig_free(scale_abs_array) 

raise MemoryError("error setting up solver") 

  

  

cdef gsl_odeiv_evolve * e 

e = gsl_odeiv_evolve_alloc(dim) 

  

if e == NULL: 

gsl_odeiv_control_free (c) 

gsl_odeiv_step_free (s) 

sig_free(y) 

sig_free(scale_abs_array) 

raise MemoryError("error setting up solver") 

  

  

cdef gsl_odeiv_system sys 

if type: # The user has passed a class with a compiled function, use that for the system 

sys.function = c_f_compiled 

sys.jacobian = c_jac_compiled 

# (<ode_system>self.function).the_parameters = self.params 

sys.params = <void *> self.function 

else: # The user passed a python function. 

sys.function = c_f 

sys.jacobian = c_jac 

sys.params = <void *> wrapper 

sys.dimension = dim 

  

  

cdef int status 

import copy 

cdef int n 

  

if len(self.t_span)==2 and num_points: 

try: 

n = num_points 

except TypeError: 

gsl_odeiv_evolve_free (e) 

gsl_odeiv_control_free (c) 

gsl_odeiv_step_free (s) 

sig_free(y) 

sig_free(scale_abs_array) 

raise TypeError("numpoints must be integer") 

result.append( (self.t_span[0],self.y_0)) 

delta = (self.t_span[1]-self.t_span[0])/(1.0*num_points) 

t =self.t_span[0] 

t_end=self.t_span[0]+delta 

for i from 0<i<=n: 

while (t < t_end): 

try: 

sig_on() 

status = gsl_odeiv_evolve_apply (e, c, s, &sys, &t, t_end, &h, y) 

sig_off() 

if (status != GSL_SUCCESS): 

raise RuntimeError 

except RuntimeError: 

gsl_odeiv_evolve_free (e) 

gsl_odeiv_control_free (c) 

gsl_odeiv_step_free (s) 

sig_free(y) 

sig_free(scale_abs_array) 

raise ValueError("error solving") 

  

for j from 0<=j<dim: 

v[j]=<double> y[j] 

result.append( (t,copy.copy(v)) ) 

t = t_end 

t_end= t+delta 

  

else: 

n = len(self.t_span) 

result.append((self.t_span[0],self.y_0)) 

t=self.t_span[0] 

for i from 0<i<n: 

t_end=self.t_span[i] 

while (t < t_end): 

try: 

sig_on() 

status = gsl_odeiv_evolve_apply (e, c, s, &sys, &t, t_end, &h, y) 

sig_off() 

if (status != GSL_SUCCESS): 

raise RuntimeError 

except RuntimeError: 

gsl_odeiv_evolve_free (e) 

gsl_odeiv_control_free (c) 

gsl_odeiv_step_free (s) 

sig_free(y) 

sig_free(scale_abs_array) 

raise ValueError("error solving") 

  

for j from 0<=j<dim: 

v[j]=<double> y[j] 

result.append( (t,copy.copy(v)) ) 

  

t=self.t_span[i] 

  

  

gsl_odeiv_evolve_free (e) 

gsl_odeiv_control_free (c) 

gsl_odeiv_step_free (s) 

sig_free(y) 

sig_free(scale_abs_array) 

self.solution = result