Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

""" 

Fast Fourier Transforms Using GSL 

  

AUTHORS: 

  

- William Stein (2006-9): initial file (radix2) 

- D. Joyner (2006-10): Minor modifications (from radix2 to general case\ 

and some documentation). 

- M. Hansen (2013-3): Fix radix2 backwards transformation 

- L.F. Tabera Alonso (2013-3): Documentation 

""" 

  

#***************************************************************************** 

# Copyright (C) 2006 William Stein <wstein@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import absolute_import 

  

from cysignals.memory cimport sig_malloc, sig_free 

  

import sage.plot.all 

import sage.libs.pari.all 

from sage.rings.integer import Integer 

from sage.rings.complex_number import ComplexNumber 

  

def FastFourierTransform(size, base_ring=None): 

""" 

Create an array for fast Fourier transform conversion using gsl. 

  

INPUT: 

  

- ``size`` -- The size of the array 

- ``base_ring`` -- Unused (2013-03) 

  

EXAMPLES: 

  

We create an array of the desired size:: 

  

sage: a = FastFourierTransform(8) 

sage: a 

[(0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0)] 

  

Now, set the values of the array:: 

  

sage: for i in range(8): a[i] = i + 1 

sage: a 

[(1.0, 0.0), (2.0, 0.0), (3.0, 0.0), (4.0, 0.0), (5.0, 0.0), (6.0, 0.0), (7.0, 0.0), (8.0, 0.0)] 

  

We can perform the forward Fourier transform on the array:: 

  

sage: a.forward_transform() 

sage: a #abs tol 1e-2 

[(36.0, 0.0), (-4.00, 9.65), (-4.0, 4.0), (-4.0, 1.65), (-4.0, 0.0), (-4.0, -1.65), (-4.0, -4.0), (-4.0, -9.65)] 

  

And backwards:: 

  

sage: a.backward_transform() 

sage: a #abs tol 1e-2 

[(8.0, 0.0), (16.0, 0.0), (24.0, 0.0), (32.0, 0.0), (40.0, 0.0), (48.0, 0.0), (56.0, 0.0), (64.0, 0.0)] 

  

Other example:: 

  

sage: a = FastFourierTransform(128) 

sage: for i in range(1, 11): 

....: a[i] = 1 

....: a[128-i] = 1 

sage: a[:6:2] 

[(0.0, 0.0), (1.0, 0.0), (1.0, 0.0)] 

sage: a.plot().show(ymin=0) 

sage: a.forward_transform() 

sage: a.plot().show() 

  

""" 

return FastFourierTransform_complex(int(size)) 

  

FFT = FastFourierTransform 

  

cdef class FastFourierTransform_base: 

pass 

  

cdef class FastFourierTransform_complex(FastFourierTransform_base): 

""" 

Wrapper class for GSL's fast Fourier transform. 

""" 

  

def __init__(self, size_t n, size_t stride=1): 

""" 

Create an array-like object of fixed size that will contain the vector to 

apply the Fast Fourier Transform. 

  

INPUT: 

  

- ``n`` -- An integer, the size of the array 

- ``stride`` -- The stride to be applied when manipulating the array. 

  

EXAMPLES:: 

  

sage: a = FastFourierTransform(1) # indirect doctest 

sage: a 

[(0.0, 0.0)] 

  

""" 

self.n = n 

self.stride = stride 

self.data = <double*>sig_malloc(sizeof(double)*(2*n)) 

cdef int i 

for i from 0 <= i < 2*n: 

self.data[i] = 0 

  

def __dealloc__(self): 

""" 

Frees allocated memory. 

  

EXAMPLES:: 

  

sage: a = FastFourierTransform(128) 

sage: del a 

  

""" 

sig_free(self.data) 

  

def __len__(self): 

""" 

Return the size of the array. 

  

OUTPUT: The size of the array. 

  

EXAMPLES:: 

  

sage: a = FastFourierTransform(48) 

sage: len(a) 

48 

  

""" 

return self.n 

  

def __setitem__(self, size_t i, xy): 

""" 

Assign a value to an index of the array. Currently the input has to be 

en element that can be coerced to ``float` or a ``ComplexNumber`` element. 

  

INPUT: 

  

- ``i`` -- An integer peresenting the index. 

- ``xy`` -- An object to store as `i`-th element of the array ``self[i]``. 

  

EXAMPLES:: 

  

sage: I = CC(I) 

sage: a = FastFourierTransform(4) 

sage: a[0] = 1 

sage: a[1] = I 

sage: a[2] = 1+I 

sage: a[3] = (2,2) 

sage: a 

[(1.0, 0.0), (0.0, 1.0), (1.0, 1.0), (2.0, 2.0)] 

sage: I = CDF(I) 

sage: a[1] = I 

Traceback (most recent call last): 

... 

TypeError: unable to convert 1.0*I to float; use abs() or real_part() as desired 

""" 

# just set real for now 

if i < 0 or i >= self.n: 

raise IndexError 

if isinstance(xy, (tuple, ComplexNumber)): 

self.data[2*i] = xy[0] 

self.data[2*i+1] = xy[1] 

else: 

self.data[2*i] = xy 

  

def __getitem__(self, i): 

""" 

Gets the `i`-th element of the array. 

  

INPUT: 

  

- ``i``: An integer. 

  

OUTPUT: 

  

- The `i`-th element of the array ``self[i]``. 

  

EXAMPLES:: 

  

sage: a = FastFourierTransform(4) 

sage: a[0] 

(0.0, 0.0) 

sage: a[0] = 1 

sage: a[0] == (1,0) 

True 

  

""" 

if isinstance(i, slice): 

start, stop, step = i.indices(self.n) 

return list(self)[start:stop:step] 

else: 

if i < 0 or i >= self.n: 

raise IndexError 

return self.data[2*i], self.data[2*i+1] 

  

def __repr__(self): 

""" 

String representation of the array. 

  

OUTPUT: 

  

- A string representing this array. The complex numbers are 

presented as a tuple of two float elements. 

  

EXAMPLES:: 

  

sage: a = FastFourierTransform(4) 

sage: for i in range(4): a[i] = i 

sage: a 

[(0.0, 0.0), (1.0, 0.0), (2.0, 0.0), (3.0, 0.0)] 

  

""" 

return str(list(self)) 

  

def _plot_polar(self, xmin, xmax, **args): 

""" 

Plot a slice of the array using polar coordinates. 

  

INPUT: 

  

- ``xmin`` -- The lower bound of the slice to plot. 

- ``xmax`` -- The upper bound of the slice to plot. 

- ``**args`` -- passed on to the line plotting function. 

  

OUTPUT: 

  

- A plot of the array interpreting each element as polar coordinates. 

  

This method should not be called directly. See :meth:`plot` for the details. 

  

EXAMPLES:: 

  

sage: a = FastFourierTransform(4) 

sage: a._plot_polar(0,2) 

Graphics object consisting of 2 graphics primitives 

  

""" 

cdef int i 

v = [] 

  

point = sage.plot.all.point 

pi = sage.symbolic.constants.pi.n() 

I = sage.symbolic.constants.I.n() 

s = 1/(3*pi) # so arg gets scaled between -1/3 and 1/3. 

  

for i from xmin <= i < xmax: 

z = self.data[2*i] + I*self.data[2*i+1] 

mag = z.abs() 

arg = z.arg()*s 

v.append(point((i,mag), hue=arg, **args)) 

return sum(v) 

  

def _plot_rect(self, xmin, xmax, **args): 

""" 

Plot a slice of the array. 

  

INPUT: 

  

- ``xmin`` -- The lower bound of the slice to plot. 

- ``xmax`` -- The upper bound of the slice to plot. 

- ``**args`` -- passed on to the line plotting function. 

  

OUTPUT: 

  

- A plot of the array. 

  

This method should not be called directly. See :meth:`plot` for the details. 

  

EXAMPLES:: 

  

sage: a = FastFourierTransform(4) 

sage: a._plot_rect(0,3) 

Graphics object consisting of 3 graphics primitives 

  

""" 

cdef int i 

cdef double pr_x, x, h 

v = [] 

  

point = sage.plot.all.point 

  

for i from xmin <= i < xmax: 

x = self.data[2*i] 

h = self.data[2*i+1] 

v.append(point((i,x), hue=h, **args)) 

return sum(v) 

  

def plot(self, style='rect', xmin=None, xmax=None, **args): 

""" 

Plot a slice of the array. 

  

- ``style`` -- Style of the plot, options are ``"rect"`` or ``"polar"`` 

- ``rect`` -- height represents real part, color represents 

imaginary part. 

- ``polar`` -- height represents absolute value, color 

represents argument. 

- ``xmin`` -- The lower bound of the slice to plot. 0 by default. 

- ``xmax`` -- The upper bound of the slice to plot. ``len(self)`` by default. 

- ``**args`` -- passed on to the line plotting function. 

  

OUTPUT: 

  

- A plot of the array. 

  

EXAMPLES:: 

  

sage: a = FastFourierTransform(16) 

sage: for i in range(16): a[i] = (random(),random()) 

sage: A = plot(a) 

sage: B = plot(a, style='polar') 

sage: type(A) 

<class 'sage.plot.graphics.Graphics'> 

sage: type(B) 

<class 'sage.plot.graphics.Graphics'> 

sage: a = FastFourierTransform(125) 

sage: b = FastFourierTransform(125) 

sage: for i in range(1, 60): a[i]=1 

sage: for i in range(1, 60): b[i]=1 

sage: a.forward_transform() 

sage: a.inverse_transform() 

sage: (a.plot()+b.plot()) 

Graphics object consisting of 250 graphics primitives 

  

""" 

if xmin is None: 

xmin = 0 

else: 

xmin = int(xmin) 

if xmax is None: 

xmax = self.n 

else: 

xmax = int(xmax) 

if style == 'rect': 

return self._plot_rect(xmin, xmax, **args) 

elif style == 'polar': 

return self._plot_polar(xmin, xmax, **args) 

else: 

raise ValueError("unknown style '%s'" % style) 

  

def forward_transform(self): 

""" 

Compute the in-place forward Fourier transform of this data 

using the Cooley-Tukey algorithm. 

  

OUTPUT: 

  

- None, the transformation is done in-place. 

  

If the number of sample points in the input is a power of 2 then the 

gsl function ``gsl_fft_complex_radix2_forward`` is automatically called. 

Otherwise, ``gsl_fft_complex_forward`` is called. 

  

EXAMPLES:: 

  

sage: a = FastFourierTransform(4) 

sage: for i in range(4): a[i] = i 

sage: a.forward_transform() 

sage: a #abs tol 1e-2 

[(6.0, 0.0), (-2.0, 2.0), (-2.0, 0.0), (-2.0, -2.0)] 

  

""" 

cdef gsl_fft_complex_wavetable * wt 

cdef gsl_fft_complex_workspace * mem 

N = Integer(self.n) 

e = N.exact_log(2) 

if N==2**e: 

gsl_fft_complex_radix2_forward(self.data, self.stride, self.n) 

else: 

mem = gsl_fft_complex_workspace_alloc(self.n) 

wt = gsl_fft_complex_wavetable_alloc(self.n) 

gsl_fft_complex_forward(self.data, self.stride, self.n, wt, mem) 

gsl_fft_complex_workspace_free(mem) 

gsl_fft_complex_wavetable_free(wt) 

  

def inverse_transform(self): 

""" 

Compute the in-place inverse Fourier transform of this data 

using the Cooley-Tukey algorithm. 

  

OUTPUT: 

  

- None, the transformation is done in-place. 

  

If the number of sample points in the input is a power of 2 then the 

function ``gsl_fft_complex_radix2_inverse`` is automatically called. 

Otherwise, ``gsl_fft_complex_inverse`` is called. 

  

This transform is normalized so ``f.forward_transform().inverse_transform() == f`` 

modulo round-off errors. See also :meth:`backward_transform`. 

  

EXAMPLES:: 

  

sage: a = FastFourierTransform(125) 

sage: b = FastFourierTransform(125) 

sage: for i in range(1, 60): a[i]=1 

sage: for i in range(1, 60): b[i]=1 

sage: a.forward_transform() 

sage: a.inverse_transform() 

sage: (a.plot()+b.plot()) 

Graphics object consisting of 250 graphics primitives 

sage: abs(sum([CDF(a[i])-CDF(b[i]) for i in range(125)])) < 2**-16 

True 

  

Here we check it with a power of two:: 

  

sage: a = FastFourierTransform(128) 

sage: b = FastFourierTransform(128) 

sage: for i in range(1, 60): a[i]=1 

sage: for i in range(1, 60): b[i]=1 

sage: a.forward_transform() 

sage: a.inverse_transform() 

sage: (a.plot()+b.plot()) 

Graphics object consisting of 256 graphics primitives 

  

""" 

cdef gsl_fft_complex_wavetable * wt 

cdef gsl_fft_complex_workspace * mem 

N = Integer(self.n) 

e = N.exact_log(2) 

if N==2**e: 

gsl_fft_complex_radix2_inverse(self.data, self.stride, self.n) 

else: 

mem = gsl_fft_complex_workspace_alloc(self.n) 

wt = gsl_fft_complex_wavetable_alloc(self.n) 

gsl_fft_complex_inverse(self.data, self.stride, self.n, wt, mem) 

gsl_fft_complex_workspace_free(mem) 

gsl_fft_complex_wavetable_free(wt) 

  

def backward_transform(self): 

""" 

Compute the in-place backwards Fourier transform of this data 

using the Cooley-Tukey algorithm. 

  

OUTPUT: 

  

- None, the transformation is done in-place. 

  

This is the same as :meth:`inverse_transform` but lacks normalization 

so that ``f.forward_transform().backward_transform() == n*f``. Where 

``n`` is the size of the array. 

  

EXAMPLES:: 

  

sage: a = FastFourierTransform(125) 

sage: b = FastFourierTransform(125) 

sage: for i in range(1, 60): a[i]=1 

sage: for i in range(1, 60): b[i]=1 

sage: a.forward_transform() 

sage: a.backward_transform() 

sage: (a.plot() + b.plot()).show(ymin=0) # long time (2s on sage.math, 2011) 

sage: abs(sum([CDF(a[i])/125-CDF(b[i]) for i in range(125)])) < 2**-16 

True 

  

Here we check it with a power of two:: 

  

sage: a = FastFourierTransform(128) 

sage: b = FastFourierTransform(128) 

sage: for i in range(1, 60): a[i]=1 

sage: for i in range(1, 60): b[i]=1 

sage: a.forward_transform() 

sage: a.backward_transform() 

sage: (a.plot() + b.plot()).show(ymin=0) 

""" 

cdef gsl_fft_complex_wavetable * wt 

cdef gsl_fft_complex_workspace * mem 

N = Integer(self.n) 

e = N.exact_log(2) 

if N==2**e: 

gsl_fft_complex_radix2_backward(self.data, self.stride, self.n) 

else: 

mem = gsl_fft_complex_workspace_alloc(self.n) 

wt = gsl_fft_complex_wavetable_alloc(self.n) 

gsl_fft_complex_backward(self.data, self.stride, self.n, wt, mem) 

gsl_fft_complex_workspace_free(mem) 

gsl_fft_complex_wavetable_free(wt) 

  

cdef class FourierTransform_complex: 

pass 

  

cdef class FourierTransform_real: 

pass