Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

r""" 

Further examples from Wester's paper 

 

These are all the problems at 

http://yacas.sourceforge.net/essaysmanual.html 

 

They come from the 1994 paper "Review of CAS mathematical 

capabilities", by Michael Wester, who put forward 123 problems that 

a reasonable computer algebra system should be able to solve and 

tested the then current versions of various commercial CAS on this 

list. Sage can do most of the problems natively now, i.e., with no 

explicit calls to Maxima or other systems. 

 

:: 

 

sage: # (YES) factorial of 50, and factor it 

sage: factorial(50) 

30414093201713378043612608166064768844377641568960512000000000000 

sage: factor(factorial(50)) 

2^47 * 3^22 * 5^12 * 7^8 * 11^4 * 13^3 * 17^2 * 19^2 * 23^2 * 29 * 31 * 37 * 41 * 43 * 47 

 

:: 

 

sage: # (YES) 1/2+...+1/10 = 4861/2520 

sage: sum(1/n for n in range(2,10+1)) == 4861/2520 

True 

 

:: 

 

sage: # (YES) Evaluate e^(Pi*Sqrt(163)) to 50 decimal digits 

sage: a = e^(pi*sqrt(163)); a 

e^(sqrt(163)*pi) 

sage: RealField(150)(a) 

2.6253741264076874399999999999925007259719820e17 

 

:: 

 

sage: # (YES) Evaluate the Bessel function J[2] numerically at z=1+I. 

sage: bessel_J(2, 1+I).n() 

0.0415798869439621 + 0.247397641513306*I 

 

:: 

 

sage: # (YES) Obtain period of decimal fraction 1/7=0.(142857). 

sage: a = 1/7 

sage: a 

1/7 

sage: a.period() 

6 

 

:: 

 

sage: # (YES) Continued fraction of 3.1415926535 

sage: a = 3.1415926535 

sage: continued_fraction(a) 

[3; 7, 15, 1, 292, 1, 1, 6, 2, 13, 4] 

 

:: 

 

sage: # (YES) Sqrt(2*Sqrt(3)+4)=1+Sqrt(3). 

sage: # The Maxima backend equality checker does this; 

sage: # note the equality only holds for one choice of sign, 

sage: # but Maxima always chooses the "positive" one 

sage: a = sqrt(2*sqrt(3) + 4); b = 1 + sqrt(3) 

sage: float(a-b) 

0.0 

sage: bool(a == b) 

True 

sage: # We can, of course, do this in a quadratic field 

sage: k.<sqrt3> = QuadraticField(3) 

sage: asqr = 2*sqrt3 + 4 

sage: b = 1+sqrt3 

sage: asqr == b^2 

True 

 

:: 

 

sage: # (YES) Sqrt(14+3*Sqrt(3+2*Sqrt(5-12*Sqrt(3-2*Sqrt(2)))))=3+Sqrt(2). 

sage: a = sqrt(14+3*sqrt(3+2*sqrt(5-12*sqrt(3-2*sqrt(2))))) 

sage: b = 3+sqrt(2) 

sage: a, b 

(sqrt(3*sqrt(2*sqrt(-12*sqrt(-2*sqrt(2) + 3) + 5) + 3) + 14), sqrt(2) + 3) 

sage: bool(a==b) 

True 

sage: abs(float(a-b)) < 1e-10 

True 

sage: # 2*Infinity-3=Infinity. 

sage: 2*infinity-3 == infinity 

True 

 

:: 

 

sage: # (YES) Standard deviation of the sample (1, 2, 3, 4, 5). 

sage: v = vector(RDF, 5, [1,2,3,4,5]) 

sage: v.standard_deviation() 

1.5811388300841898 

 

:: 

 

sage: # (NO) Hypothesis testing with t-distribution. 

sage: # (NO) Hypothesis testing with chi^2 distribution 

sage: # (But both are included in Scipy and R) 

 

:: 

 

sage: # (YES) (x^2-4)/(x^2+4*x+4)=(x-2)/(x+2). 

sage: R.<x> = QQ[] 

sage: (x^2-4)/(x^2+4*x+4) == (x-2)/(x+2) 

True 

sage: restore('x') 

 

:: 

 

sage: # (YES -- Maxima doesn't immediately consider them 

sage: # equal, but simplification shows that they are) 

sage: # (Exp(x)-1)/(Exp(x/2)+1)=Exp(x/2)-1. 

sage: f = (exp(x)-1)/(exp(x/2)+1) 

sage: g = exp(x/2)-1 

sage: f 

(e^x - 1)/(e^(1/2*x) + 1) 

sage: g 

e^(1/2*x) - 1 

sage: f.canonicalize_radical() 

e^(1/2*x) - 1 

sage: g 

e^(1/2*x) - 1 

sage: f(x=10.0).n(53), g(x=10.0).n(53) 

(147.413159102577, 147.413159102577) 

sage: bool(f == g) 

True 

 

:: 

 

sage: # (YES) Expand (1+x)^20, take derivative and factorize. 

sage: # first do it using algebraic polys 

sage: R.<x> = QQ[] 

sage: f = (1+x)^20; f 

x^20 + 20*x^19 + 190*x^18 + 1140*x^17 + 4845*x^16 + 15504*x^15 + 38760*x^14 + 77520*x^13 + 125970*x^12 + 167960*x^11 + 184756*x^10 + 167960*x^9 + 125970*x^8 + 77520*x^7 + 38760*x^6 + 15504*x^5 + 4845*x^4 + 1140*x^3 + 190*x^2 + 20*x + 1 

sage: deriv = f.derivative() 

sage: deriv 

20*x^19 + 380*x^18 + 3420*x^17 + 19380*x^16 + 77520*x^15 + 232560*x^14 + 542640*x^13 + 1007760*x^12 + 1511640*x^11 + 1847560*x^10 + 1847560*x^9 + 1511640*x^8 + 1007760*x^7 + 542640*x^6 + 232560*x^5 + 77520*x^4 + 19380*x^3 + 3420*x^2 + 380*x + 20 

sage: deriv.factor() 

(20) * (x + 1)^19 

sage: restore('x') 

sage: # next do it symbolically 

sage: var('y') 

y 

sage: f = (1+y)^20; f 

(y + 1)^20 

sage: g = f.expand(); g 

y^20 + 20*y^19 + 190*y^18 + 1140*y^17 + 4845*y^16 + 15504*y^15 + 38760*y^14 + 77520*y^13 + 125970*y^12 + 167960*y^11 + 184756*y^10 + 167960*y^9 + 125970*y^8 + 77520*y^7 + 38760*y^6 + 15504*y^5 + 4845*y^4 + 1140*y^3 + 190*y^2 + 20*y + 1 

sage: deriv = g.derivative(); deriv 

20*y^19 + 380*y^18 + 3420*y^17 + 19380*y^16 + 77520*y^15 + 232560*y^14 + 542640*y^13 + 1007760*y^12 + 1511640*y^11 + 1847560*y^10 + 1847560*y^9 + 1511640*y^8 + 1007760*y^7 + 542640*y^6 + 232560*y^5 + 77520*y^4 + 19380*y^3 + 3420*y^2 + 380*y + 20 

sage: deriv.factor() 

20*(y + 1)^19 

 

:: 

 

sage: # (YES) Factorize x^100-1. 

sage: factor(x^100-1) 

(x^40 - x^30 + x^20 - x^10 + 1)*(x^20 + x^15 + x^10 + x^5 + 1)*(x^20 - x^15 + x^10 - x^5 + 1)*(x^8 - x^6 + x^4 - x^2 + 1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1)*(x^2 + 1)*(x + 1)*(x - 1) 

sage: # Also, algebraically 

sage: x = polygen(QQ) 

sage: factor(x^100 - 1) 

(x - 1) * (x + 1) * (x^2 + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1) * (x^8 - x^6 + x^4 - x^2 + 1) * (x^20 - x^15 + x^10 - x^5 + 1) * (x^20 + x^15 + x^10 + x^5 + 1) * (x^40 - x^30 + x^20 - x^10 + 1) 

sage: restore('x') 

 

:: 

 

sage: # (YES) Factorize x^4-3*x^2+1 in the field of rational numbers extended by roots of x^2-x-1. 

sage: k.< a> = NumberField(x^2 - x -1) 

sage: R.< y> = k[] 

sage: f = y^4 - 3*y^2 + 1 

sage: f 

y^4 - 3*y^2 + 1 

sage: factor(f) 

(y - a) * (y - a + 1) * (y + a - 1) * (y + a) 

 

:: 

 

sage: # (YES) Factorize x^4-3*x^2+1 mod 5. 

sage: k.< x > = GF(5) [ ] 

sage: f = x^4 - 3*x^2 + 1 

sage: f.factor() 

(x + 2)^2 * (x + 3)^2 

sage: # Alternatively, from symbol x as follows: 

sage: reset('x') 

sage: f = x^4 - 3*x^2 + 1 

sage: f.polynomial(GF(5)).factor() 

(x + 2)^2 * (x + 3)^2 

 

:: 

 

sage: # (YES) Partial fraction decomposition of (x^2+2*x+3)/(x^3+4*x^2+5*x+2) 

sage: f = (x^2+2*x+3)/(x^3+4*x^2+5*x+2); f 

(x^2 + 2*x + 3)/(x^3 + 4*x^2 + 5*x + 2) 

sage: f.partial_fraction() 

3/(x + 2) - 2/(x + 1) + 2/(x + 1)^2 

 

:: 

 

sage: # (YES) Assuming x>=y, y>=z, z>=x, deduce x=z. 

sage: forget() 

sage: var('x,y,z') 

(x, y, z) 

sage: assume(x>=y, y>=z,z>=x) 

sage: bool(x==z) 

True 

 

:: 

 

sage: # (YES) Assuming x>y, y>0, deduce 2*x^2>2*y^2. 

sage: forget() 

sage: assume(x>y, y>0) 

sage: list(sorted(assumptions())) 

[x > y, y > 0] 

sage: bool(2*x^2 > 2*y^2) 

True 

sage: forget() 

sage: assumptions() 

[] 

 

:: 

 

sage: # (NO) Solve the inequality Abs(x-1)>2. 

sage: # Maxima doesn't solve inequalities 

sage: # (but some Maxima packages do): 

sage: eqn = abs(x-1) > 2 

sage: eqn 

abs(x - 1) > 2 

 

:: 

 

sage: # (NO) Solve the inequality (x-1)*...*(x-5)<0. 

sage: eqn = prod(x-i for i in range(1,5 +1)) < 0 

sage: # but don't know how to solve 

sage: eqn 

(x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5) < 0 

 

:: 

 

sage: # (YES) Cos(3*x)/Cos(x)=Cos(x)^2-3*Sin(x)^2 or similar equivalent combination. 

sage: f = cos(3*x)/cos(x) 

sage: g = cos(x)^2 - 3*sin(x)^2 

sage: h = f-g 

sage: h.trig_simplify() 

0 

 

:: 

 

sage: # (YES) Cos(3*x)/Cos(x)=2*Cos(2*x)-1. 

sage: f = cos(3*x)/cos(x) 

sage: g = 2*cos(2*x) - 1 

sage: h = f-g 

sage: h.trig_simplify() 

0 

 

:: 

 

sage: # (GOOD ENOUGH) Define rewrite rules to match Cos(3*x)/Cos(x)=Cos(x)^2-3*Sin(x)^2. 

sage: # Sage has no notion of "rewrite rules", but 

sage: # it can simplify both to the same thing. 

sage: (cos(3*x)/cos(x)).simplify_full() 

4*cos(x)^2 - 3 

sage: (cos(x)^2-3*sin(x)^2).simplify_full() 

4*cos(x)^2 - 3 

 

:: 

 

sage: # (YES) Sqrt(997)-(997^3)^(1/6)=0 

sage: a = sqrt(997) - (997^3)^(1/6) 

sage: a.simplify() 

0 

sage: bool(a == 0) 

True 

 

:: 

 

sage: # (YES) Sqrt(99983)-99983^3^(1/6)=0 

sage: a = sqrt(99983) - (99983^3)^(1/6) 

sage: bool(a==0) 

True 

sage: float(a) 

1.1368683772...e-13 

sage: 13*7691 

99983 

 

:: 

 

sage: # (YES) (2^(1/3) + 4^(1/3))^3 - 6*(2^(1/3) + 4^(1/3))-6 = 0 

sage: a = (2^(1/3) + 4^(1/3))^3 - 6*(2^(1/3) + 4^(1/3)) - 6; a 

(4^(1/3) + 2^(1/3))^3 - 6*4^(1/3) - 6*2^(1/3) - 6 

sage: bool(a==0) 

True 

sage: abs(float(a)) < 1e-10 

True 

sage: ## or we can do it using number fields. 

sage: reset('x') 

sage: k.<b> = NumberField(x^3-2) 

sage: a = (b + b^2)^3 - 6*(b + b^2) - 6 

sage: a 

0 

 

:: 

 

sage: # (NO, except numerically) Ln(Tan(x/2+Pi/4))-ArcSinh(Tan(x))=0 

# Sage uses the Maxima convention when comparing symbolic expressions and 

# returns True only when it can prove equality. Thus, in this case, we get 

# False even though the equality holds. 

sage: f = log(tan(x/2 + pi/4)) - arcsinh(tan(x)) 

sage: bool(f == 0) 

False 

sage: [abs(float(f(x=i/10))) < 1e-15 for i in range(1,5)] 

[True, True, True, True] 

sage: # Numerically, the expression Ln(Tan(x/2+Pi/4))-ArcSinh(Tan(x))=0 and its derivative at x=0 are zero. 

sage: g = f.derivative() 

sage: abs(float(f(x=0))) < 1e-10 

True 

sage: abs(float(g(x=0))) < 1e-10 

True 

sage: g 

-sqrt(tan(x)^2 + 1) + 1/2*(tan(1/4*pi + 1/2*x)^2 + 1)/tan(1/4*pi + 1/2*x) 

 

:: 

 

sage: # (NO) Ln((2*Sqrt(r) + 1)/Sqrt(4*r 4*Sqrt(r) 1))=0. 

sage: var('r') 

r 

sage: f = log( (2*sqrt(r) + 1) / sqrt(4*r + 4*sqrt(r) + 1)) 

sage: f 

log((2*sqrt(r) + 1)/sqrt(4*r + 4*sqrt(r) + 1)) 

sage: bool(f == 0) 

False 

sage: [abs(float(f(r=i))) < 1e-10 for i in [0.1,0.3,0.5]] 

[True, True, True] 

 

:: 

 

sage: # (NO) 

sage: # (4*r+4*Sqrt(r)+1)^(Sqrt(r)/(2*Sqrt(r)+1))*(2*Sqrt(r)+1)^(2*Sqrt(r)+1)^(-1)-2*Sqrt(r)-1=0, assuming r>0. 

sage: assume(r>0) 

sage: f = (4*r+4*sqrt(r)+1)^(sqrt(r)/(2*sqrt(r)+1))*(2*sqrt(r)+1)^(2*sqrt(r)+1)^(-1)-2*sqrt(r)-1 

sage: f 

(4*r + 4*sqrt(r) + 1)^(sqrt(r)/(2*sqrt(r) + 1))*(2*sqrt(r) + 1)^(1/(2*sqrt(r) + 1)) - 2*sqrt(r) - 1 

sage: bool(f == 0) 

False 

sage: [abs(float(f(r=i))) < 1e-10 for i in [0.1,0.3,0.5]] 

[True, True, True] 

 

:: 

 

sage: # (YES) Obtain real and imaginary parts of Ln(3+4*I). 

sage: a = log(3+4*I); a 

log(4*I + 3) 

sage: a.real() 

log(5) 

sage: a.imag() 

arctan(4/3) 

 

:: 

 

sage: # (YES) Obtain real and imaginary parts of Tan(x+I*y) 

sage: z = var('z') 

sage: a = tan(z); a 

tan(z) 

sage: a.real() 

sin(2*real_part(z))/(cos(2*real_part(z)) + cosh(2*imag_part(z))) 

sage: a.imag() 

sinh(2*imag_part(z))/(cos(2*real_part(z)) + cosh(2*imag_part(z))) 

 

 

:: 

 

sage: # (YES) Simplify Ln(Exp(z)) to z for -Pi<Im(z)<=Pi. 

sage: # Unfortunately (?), Maxima does this even without 

sage: # any assumptions. 

sage: # We *would* use assume(-pi < imag(z)) 

sage: # and assume(imag(z) <= pi) 

sage: f = log(exp(z)); f 

log(e^z) 

sage: f.simplify() 

z 

sage: forget() 

 

:: 

 

sage: # (YES) Assuming Re(x)>0, Re(y)>0, deduce x^(1/n)*y^(1/n)-(x*y)^(1/n)=0. 

sage: # Maxima 5.26 has different behaviours depending on the current 

sage: # domain. 

sage: # To stick with the behaviour of previous versions, the domain is set 

sage: # to 'real' in the following. 

sage: # See Trac #10682 for further details. 

sage: n = var('n') 

sage: f = x^(1/n)*y^(1/n)-(x*y)^(1/n) 

sage: assume(real(x) > 0, real(y) > 0) 

sage: f.simplify() 

x^(1/n)*y^(1/n) - (x*y)^(1/n) 

sage: maxima = sage.calculus.calculus.maxima 

sage: maxima.set('domain', 'real') # set domain to real 

sage: f.simplify() 

0 

sage: maxima.set('domain', 'complex') # set domain back to its default value 

sage: forget() 

 

:: 

 

sage: # (YES) Transform equations, (x==2)/2+(1==1)=>x/2+1==2. 

sage: eq1 = x == 2 

sage: eq2 = SR(1) == SR(1) 

sage: eq1/2 + eq2 

1/2*x + 1 == 2 

 

:: 

 

sage: # (SOMEWHAT) Solve Exp(x)=1 and get all solutions. 

sage: # to_poly_solve in Maxima can do this. 

sage: solve(exp(x) == 1, x) 

[x == 0] 

 

:: 

 

sage: # (SOMEWHAT) Solve Tan(x)=1 and get all solutions. 

sage: # to_poly_solve in Maxima can do this. 

sage: solve(tan(x) == 1, x) 

[x == 1/4*pi] 

 

:: 

 

sage: # (YES) Solve a degenerate 3x3 linear system. 

sage: # x+y+z==6,2*x+y+2*z==10,x+3*y+z==10 

sage: # First symbolically: 

sage: solve([x+y+z==6, 2*x+y+2*z==10, x+3*y+z==10], x,y,z) 

[[x == -r1 + 4, y == 2, z == r1]] 

 

:: 

 

sage: # (YES) Invert a 2x2 symbolic matrix. 

sage: # [[a,b],[1,a*b]] 

sage: # Using multivariate poly ring -- much nicer 

sage: R.<a,b> = QQ[] 

sage: m = matrix(2,2,[a,b, 1, a*b]) 

sage: zz = m^(-1) 

sage: zz 

[ a/(a^2 - 1) (-1)/(a^2 - 1)] 

[(-1)/(a^2*b - b) a/(a^2*b - b)] 

 

:: 

 

sage: # (YES) Compute and factor the determinant of the 4x4 Vandermonde matrix in a, b, c, d. 

sage: var('a,b,c,d') 

(a, b, c, d) 

sage: m = matrix(SR, 4, 4, [[z^i for i in range(4)] for z in [a,b,c,d]]) 

sage: m 

[ 1 a a^2 a^3] 

[ 1 b b^2 b^3] 

[ 1 c c^2 c^3] 

[ 1 d d^2 d^3] 

sage: d = m.determinant() 

sage: d.factor() 

(a - b)*(a - c)*(a - d)*(b - c)*(b - d)*(c - d) 

 

:: 

 

sage: # (YES) Compute and factor the determinant of the 4x4 Vandermonde matrix in a, b, c, d. 

sage: # Do it instead in a multivariate ring 

sage: R.<a,b,c,d> = QQ[] 

sage: m = matrix(R, 4, 4, [[z^i for i in range(4)] for z in [a,b,c,d]]) 

sage: m 

[ 1 a a^2 a^3] 

[ 1 b b^2 b^3] 

[ 1 c c^2 c^3] 

[ 1 d d^2 d^3] 

sage: d = m.determinant() 

sage: d 

a^3*b^2*c - a^2*b^3*c - a^3*b*c^2 + a*b^3*c^2 + a^2*b*c^3 - a*b^2*c^3 - a^3*b^2*d + a^2*b^3*d + a^3*c^2*d - b^3*c^2*d - a^2*c^3*d + b^2*c^3*d + a^3*b*d^2 - a*b^3*d^2 - a^3*c*d^2 + b^3*c*d^2 + a*c^3*d^2 - b*c^3*d^2 - a^2*b*d^3 + a*b^2*d^3 + a^2*c*d^3 - b^2*c*d^3 - a*c^2*d^3 + b*c^2*d^3 

sage: d.factor() 

(-1) * (c - d) * (-b + c) * (b - d) * (-a + c) * (-a + b) * (a - d) 

 

:: 

 

sage: # (YES) Find the eigenvalues of a 3x3 integer matrix. 

sage: m = matrix(QQ, 3, [5,-3,-7, -2,1,2, 2,-3,-4]) 

sage: m.eigenspaces_left() 

[ 

(3, Vector space of degree 3 and dimension 1 over Rational Field 

User basis matrix: 

[ 1 0 -1]), 

(1, Vector space of degree 3 and dimension 1 over Rational Field 

User basis matrix: 

[ 1 1 -1]), 

(-2, Vector space of degree 3 and dimension 1 over Rational Field 

User basis matrix: 

[0 1 1]) 

] 

 

:: 

 

sage: # (YES) Verify some standard limits found by L'Hopital's rule: 

sage: # Verify(Limit(x,Infinity) (1+1/x)^x, Exp(1)); 

sage: # Verify(Limit(x,0) (1-Cos(x))/x^2, 1/2); 

sage: limit( (1+1/x)^x, x = oo) 

e 

sage: limit( (1-cos(x))/(x^2), x = 1/2) 

-4*cos(1/2) + 4 

 

:: 

 

sage: # (OK-ish) D(x)Abs(x) 

sage: # Verify(D(x) Abs(x), Sign(x)); 

sage: diff(abs(x)) 

1/2*(x + conjugate(x))/abs(x) 

sage: _.simplify_full() 

x/abs(x) 

sage: _ = var('x', domain='real') 

sage: diff(abs(x)) 

x/abs(x) 

sage: forget() 

 

:: 

 

sage: # (YES) (Integrate(x)Abs(x))=Abs(x)*x/2 

sage: integral(abs(x), x) 

1/2*x*abs(x) 

 

:: 

 

sage: # (YES) Compute derivative of Abs(x), piecewise defined. 

sage: # Verify(D(x)if(x<0) (-x) else x, 

sage: # Simplify(if(x<0) -1 else 1)) 

Piecewise defined function with 2 parts, [[(-10, 0), -1], [(0, 10), 1]] 

sage: # (NOT really) Integrate Abs(x), piecewise defined. 

sage: # Verify(Simplify(Integrate(x) 

sage: # if(x<0) (-x) else x), 

sage: # Simplify(if(x<0) (-x^2/2) else x^2/2)); 

sage: f = piecewise([ ((-10,0), -x), ((0,10), x)]) 

sage: f.integral(definite=True) 

100 

 

:: 

 

sage: # (YES) Taylor series of 1/Sqrt(1-v^2/c^2) at v=0. 

sage: var('v,c') 

(v, c) 

sage: taylor(1/sqrt(1-v^2/c^2), v, 0, 7) 

1/2*v^2/c^2 + 3/8*v^4/c^4 + 5/16*v^6/c^6 + 1 

 

:: 

 

sage: # (OK-ish) (Taylor expansion of Sin(x))/(Taylor expansion of Cos(x)) = (Taylor expansion of Tan(x)). 

sage: # TestYacas(Taylor(x,0,5)(Taylor(x,0,5)Sin(x))/ 

sage: # (Taylor(x,0,5)Cos(x)), Taylor(x,0,5)Tan(x)); 

sage: f = taylor(sin(x), x, 0, 8) 

sage: g = taylor(cos(x), x, 0, 8) 

sage: h = taylor(tan(x), x, 0, 8) 

sage: f = f.power_series(QQ) 

sage: g = g.power_series(QQ) 

sage: h = h.power_series(QQ) 

sage: f - g*h 

O(x^8) 

 

:: 

 

sage: # (YES) Taylor expansion of Ln(x)^a*Exp(-b*x) at x=1. 

sage: a,b = var('a,b') 

sage: taylor(log(x)^a*exp(-b*x), x, 1, 3) 

-1/48*(a^3*(x - 1)^a + a^2*(6*b + 5)*(x - 1)^a + 8*b^3*(x - 1)^a + 2*(6*b^2 + 5*b + 3)*a*(x - 1)^a)*(x - 1)^3*e^(-b) + 1/24*(3*a^2*(x - 1)^a + a*(12*b + 5)*(x - 1)^a + 12*b^2*(x - 1)^a)*(x - 1)^2*e^(-b) - 1/2*(a*(x - 1)^a + 2*b*(x - 1)^a)*(x - 1)*e^(-b) + (x - 1)^a*e^(-b) 

 

:: 

 

sage: # (YES) Taylor expansion of Ln(Sin(x)/x) at x=0. 

sage: taylor(log(sin(x)/x), x, 0, 10) 

-1/467775*x^10 - 1/37800*x^8 - 1/2835*x^6 - 1/180*x^4 - 1/6*x^2 

 

:: 

 

sage: # (NO) Compute n-th term of the Taylor series of Ln(Sin(x)/x) at x=0. 

sage: # need formal functions 

 

:: 

 

sage: # (NO) Compute n-th term of the Taylor series of Exp(-x)*Sin(x) at x=0. 

sage: # (Sort of, with some work) 

sage: # Solve x=Sin(y)+Cos(y) for y as Taylor series in x at x=1. 

sage: # TestYacas(InverseTaylor(y,0,4) Sin(y)+Cos(y), 

sage: # (y-1)+(y-1)^2/2+2*(y-1)^3/3+(y-1)^4); 

sage: # Note that InverseTaylor does not give the series in terms of x but in terms of y which is semantically 

sage: # wrong. But other CAS do the same. 

sage: f = sin(y) + cos(y) 

sage: g = f.taylor(y, 0, 10) 

sage: h = g.power_series(QQ) 

sage: k = (h - 1).reverse() 

sage: k 

y + 1/2*y^2 + 2/3*y^3 + y^4 + 17/10*y^5 + 37/12*y^6 + 41/7*y^7 + 23/2*y^8 + 1667/72*y^9 + 3803/80*y^10 + O(y^11) 

 

:: 

 

sage: # (OK) Compute Legendre polynomials directly from Rodrigues's formula, P[n]=1/(2^n*n!) *(Deriv(x,n)(x^2-1)^n). 

sage: # P(n,x) := Simplify( 1/(2*n)!! * 

sage: # Deriv(x,n) (x^2-1)^n ); 

sage: # TestYacas(P(4,x), (35*x^4)/8+(-15*x^2)/4+3/8); 

sage: P = lambda n, x: simplify(diff((x^2-1)^n,x,n) / (2^n * factorial(n))) 

sage: P(4,x).expand() 

35/8*x^4 - 15/4*x^2 + 3/8 

 

:: 

 

sage: # (YES) Define the polynomial p=Sum(i,1,5,a[i]*x^i). 

sage: # symbolically 

sage: ps = sum(var('a%s'%i)*x^i for i in range(1,6)); ps 

a5*x^5 + a4*x^4 + a3*x^3 + a2*x^2 + a1*x 

sage: ps.parent() 

Symbolic Ring 

sage: # algebraically 

sage: R = PolynomialRing(QQ,5,names='a') 

sage: S.<x> = PolynomialRing(R) 

sage: p = S(list(R.gens()))*x; p 

a4*x^5 + a3*x^4 + a2*x^3 + a1*x^2 + a0*x 

sage: p.parent() 

Univariate Polynomial Ring in x over Multivariate Polynomial Ring in a0, a1, a2, a3, a4 over Rational Field 

 

:: 

 

sage: # (YES) Convert the above to Horner's form. 

sage: # Verify(Horner(p, x), ((((a[5]*x+a[4])*x 

sage: # +a[3])*x+a[2])*x+a[1])*x); 

sage: restore('x') 

sage: SR(p).horner(x) 

((((a4*x + a3)*x + a2)*x + a1)*x + a0)*x 

 

:: 

 

sage: # (NO) Convert the result of problem 127 to Fortran syntax. 

sage: # CForm(Horner(p, x)); 

 

:: 

 

sage: # (YES) Verify that True And False=False. 

sage: (True and False) is False 

True 

 

:: 

 

sage: # (YES) Prove x Or Not x. 

sage: for x in [True, False]: 

....: print(x or (not x)) 

True 

True 

 

:: 

 

sage: # (YES) Prove x Or y Or x And y=>x Or y. 

sage: for x in [True, False]: 

....: for y in [True, False]: 

....: if x or y or x and y: 

....: if not (x or y): 

....: print("failed!") 

"""