Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

# -*- coding: utf-8 -*- 

r""" 

Finite dimensional algebras with basis 

 

.. TODO:: 

 

Quotients of polynomial rings. 

 

Quotients in general. 

 

Matrix rings. 

 

REFERENCES: 

 

- [CR1962]_ 

""" 

#***************************************************************************** 

# Copyright (C) 2008 Teresa Gomez-Diaz (CNRS) <Teresa.Gomez-Diaz@univ-mlv.fr> 

# 2011-2015 Nicolas M. Thiéry <nthiery at users.sf.net> 

# 2011-2015 Franco Saliola <saliola@gmail.com> 

# 2014-2015 Aladin Virmaux <aladin.virmaux at u-psud.fr> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# http://www.gnu.org/licenses/ 

#****************************************************************************** 

 

import operator 

from sage.misc.cachefunc import cached_method 

from sage.categories.category_with_axiom import CategoryWithAxiom_over_base_ring 

from sage.categories.algebras import Algebras 

from sage.categories.associative_algebras import AssociativeAlgebras 

from sage.matrix.constructor import Matrix 

 

class FiniteDimensionalAlgebrasWithBasis(CategoryWithAxiom_over_base_ring): 

r""" 

The category of finite dimensional algebras with a distinguished basis. 

 

EXAMPLES:: 

 

sage: C = FiniteDimensionalAlgebrasWithBasis(QQ); C 

Category of finite dimensional algebras with basis over Rational Field 

sage: C.super_categories() 

[Category of algebras with basis over Rational Field, 

Category of finite dimensional modules with basis over Rational Field] 

sage: C.example() 

An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

 

TESTS:: 

 

sage: TestSuite(C).run() 

sage: C is Algebras(QQ).FiniteDimensional().WithBasis() 

True 

sage: C is Algebras(QQ).WithBasis().FiniteDimensional() 

True 

""" 

 

class ParentMethods: 

 

@cached_method 

def radical_basis(self): 

r""" 

Return a basis of the Jacobson radical of this algebra. 

 

.. NOTE:: 

 

This implementation handles algebras over fields of 

characteristic zero (using Dixon's lemma) or fields of 

characteristic `p` in which we can compute `x^{1/p}` 

[FR1985]_, [Eb1989]_. 

 

OUTPUT: 

 

- a list of elements of ``self``. 

 

.. SEEALSO:: :meth:`radical`, :class:`Algebras.Semisimple` 

 

EXAMPLES:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A 

An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

sage: A.radical_basis() 

(a, b) 

 

We construct the group algebra of the Klein Four-Group 

over the rationals:: 

 

sage: A = KleinFourGroup().algebra(QQ) 

 

This algebra belongs to the category of finite dimensional 

algebras over the rationals:: 

 

sage: A in Algebras(QQ).FiniteDimensional().WithBasis() 

True 

 

Since the field has characteristic `0`, Maschke's Theorem 

tells us that the group algebra is semisimple. So its 

radical is the zero ideal:: 

 

sage: A in Algebras(QQ).Semisimple() 

True 

sage: A.radical_basis() 

() 

 

Let's work instead over a field of characteristic `2`:: 

 

sage: A = KleinFourGroup().algebra(GF(2)) 

sage: A in Algebras(GF(2)).Semisimple() 

False 

sage: A.radical_basis() 

(() + (1,2)(3,4), (3,4) + (1,2)(3,4), (1,2) + (1,2)(3,4)) 

 

We now implement the algebra `A = K[x] / (x^p-1)`, where `K` 

is a finite field of characteristic `p`, and check its 

radical; alas, we currently need to wrap `A` to make it a 

proper :class:`ModulesWithBasis`:: 

 

sage: class AnAlgebra(CombinatorialFreeModule): 

....: def __init__(self, F): 

....: R.<x> = PolynomialRing(F) 

....: I = R.ideal(x**F.characteristic()-F.one()) 

....: self._xbar = R.quotient(I).gen() 

....: basis_keys = [self._xbar**i for i in range(F.characteristic())] 

....: CombinatorialFreeModule.__init__(self, F, basis_keys, 

....: category=Algebras(F).FiniteDimensional().WithBasis()) 

....: def one(self): 

....: return self.basis()[self.base_ring().one()] 

....: def product_on_basis(self, w1, w2): 

....: return self.from_vector(vector(w1*w2)) 

sage: AnAlgebra(GF(3)).radical_basis() 

(B[1] + 2*B[xbar^2], B[xbar] + 2*B[xbar^2]) 

sage: AnAlgebra(GF(16,'a')).radical_basis() 

(B[1] + B[xbar],) 

sage: AnAlgebra(GF(49,'a')).radical_basis() 

(B[1] + 6*B[xbar^6], B[xbar] + 6*B[xbar^6], B[xbar^2] + 6*B[xbar^6], 

B[xbar^3] + 6*B[xbar^6], B[xbar^4] + 6*B[xbar^6], B[xbar^5] + 6*B[xbar^6]) 

 

TESTS:: 

 

sage: A = KleinFourGroup().algebra(GF(2)) 

sage: A.radical_basis() 

(() + (1,2)(3,4), (3,4) + (1,2)(3,4), (1,2) + (1,2)(3,4)) 

 

sage: A = KleinFourGroup().algebra(QQ, category=Monoids()) 

sage: A.radical_basis.__module__ 

'sage.categories.finite_dimensional_algebras_with_basis' 

sage: A.radical_basis() 

() 

""" 

F = self.base_ring() 

if not F.is_field(): 

raise NotImplementedError("the base ring must be a field") 

p = F.characteristic() 

from sage.matrix.constructor import matrix 

from sage.modules.free_module_element import vector 

 

product_on_basis = self.product_on_basis 

 

if p == 0: 

keys = list(self.basis().keys()) 

cache = [{(i,j): c 

for i in keys 

for j,c in product_on_basis(y,i)} 

for y in keys] 

mat = [ [ sum(x.get((j, i), 0) * c for (i,j),c in y.items()) 

for x in cache] 

for y in cache] 

 

mat = matrix(self.base_ring(), mat) 

rad_basis = mat.kernel().basis() 

 

else: 

# TODO: some finite field elements in Sage have both an 

# ``nth_root`` method and a ``pth_root`` method (such as ``GF(9,'a')``), 

# some only have a ``nth_root`` element such as ``GF(2)`` 

# I imagine that ``pth_root`` would be fastest, but it is not 

# always available.... 

if hasattr(self.base_ring().one(), 'nth_root'): 

root_fcn = lambda s, x : x.nth_root(s) 

else: 

root_fcn = lambda s, x : x**(1/s) 

 

s, n = 1, self.dimension() 

B = [b.on_left_matrix() for b in self.basis()] 

I = B[0].parent().one() 

while s <= n: 

BB = B + [I] 

G = matrix([ [(-1)**s * (b*bb).characteristic_polynomial()[n-s] 

for bb in BB] for b in B]) 

C = G.left_kernel().basis() 

if 1 < s < F.order(): 

C = [vector(F, [root_fcn(s, ci) for ci in c]) for c in C] 

B = [ sum(ci*b for (ci,b) in zip(c,B)) for c in C ] 

s = p * s 

e = vector(self.one()) 

rad_basis = [b*e for b in B] 

 

return tuple([self.from_vector(vec) for vec in rad_basis]) 

 

@cached_method 

def radical(self): 

r""" 

Return the Jacobson radical of ``self``. 

 

This uses :meth:`radical_basis`, whose default 

implementation handles algebras over fields of 

characteristic zero or fields of characteristic `p` in 

which we can compute `x^{1/p}`. 

 

.. SEEALSO:: :meth:`radical_basis`, :meth:`semisimple_quotient` 

 

EXAMPLES:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A 

An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

sage: radical = A.radical(); radical 

Radical of An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

 

The radical is an ideal of `A`, and thus a finite 

dimensional non unital associative algebra:: 

 

sage: from sage.categories.associative_algebras import AssociativeAlgebras 

sage: radical in AssociativeAlgebras(QQ).WithBasis().FiniteDimensional() 

True 

sage: radical in Algebras(QQ) 

False 

 

sage: radical.dimension() 

2 

sage: radical.basis() 

Finite family {0: B[0], 1: B[1]} 

sage: radical.ambient() is A 

True 

sage: [c.lift() for c in radical.basis()] 

[a, b] 

 

.. TODO:: 

 

- Tell Sage that the radical is in fact an ideal; 

- Pickling by construction, as ``A.center()``; 

- Lazy evaluation of ``_repr_``. 

 

TESTS:: 

 

sage: TestSuite(radical).run() 

""" 

category = AssociativeAlgebras(self.base_ring()).WithBasis().FiniteDimensional().Subobjects() 

radical = self.submodule(self.radical_basis(), 

category=category, 

already_echelonized=True) 

radical.rename("Radical of {}".format(self)) 

return radical 

 

@cached_method 

def semisimple_quotient(self): 

""" 

Return the semisimple quotient of ``self``. 

 

This is the quotient of ``self`` by its radical. 

 

.. SEEALSO:: :meth:`radical` 

 

EXAMPLES:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A 

An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

sage: a,b,x,y = sorted(A.basis()) 

sage: S = A.semisimple_quotient(); S 

Semisimple quotient of An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

sage: S in Algebras(QQ).Semisimple() 

True 

sage: S.basis() 

Finite family {'y': B['y'], 'x': B['x']} 

sage: xs,ys = sorted(S.basis()) 

sage: (xs + ys) * xs 

B['x'] 

 

Sanity check: the semisimple quotient of the `n`-th 

descent algebra of the symmetric group is of dimension the 

number of partitions of `n`:: 

 

sage: [ DescentAlgebra(QQ,n).B().semisimple_quotient().dimension() 

....: for n in range(6) ] 

[1, 1, 2, 3, 5, 7] 

sage: [Partitions(n).cardinality() for n in range(10)] 

[1, 1, 2, 3, 5, 7, 11, 15, 22, 30] 

 

.. TODO:: 

 

- Pickling by construction, as ``A.semisimple_quotient()``? 

- Lazy evaluation of ``_repr_`` 

 

TESTS:: 

 

sage: TestSuite(S).run() 

""" 

ring = self.base_ring() 

category = Algebras(ring).WithBasis().FiniteDimensional().Quotients().Semisimple() 

result = self.quotient_module(self.radical(), category=category) 

result.rename("Semisimple quotient of {}".format(self)) 

return result 

 

 

@cached_method 

def center_basis(self): 

r""" 

Return a basis of the center of ``self``. 

 

OUTPUT: 

 

- a list of elements of ``self``. 

 

.. SEEALSO:: :meth:`center` 

 

EXAMPLES:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A 

An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

sage: A.center_basis() 

(x + y,) 

""" 

return self.annihilator_basis(self.algebra_generators(), self.bracket) 

 

@cached_method 

def center(self): 

r""" 

Return the center of ``self``. 

 

.. SEEALSO:: :meth:`center_basis` 

 

EXAMPLES:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A 

An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

sage: center = A.center(); center 

Center of An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

sage: center in Algebras(QQ).WithBasis().FiniteDimensional().Commutative() 

True 

sage: center.dimension() 

1 

sage: center.basis() 

Finite family {0: B[0]} 

sage: center.ambient() is A 

True 

sage: [c.lift() for c in center.basis()] 

[x + y] 

 

The center of a semisimple algebra is semisimple:: 

 

sage: DihedralGroup(6).algebra(QQ).center() in Algebras(QQ).Semisimple() 

True 

 

.. TODO:: 

 

- Pickling by construction, as ``A.center()``? 

- Lazy evaluation of ``_repr_`` 

 

TESTS:: 

 

sage: TestSuite(center).run() 

""" 

category = Algebras(self.base_ring()).FiniteDimensional().Subobjects().Commutative().WithBasis() 

if self in Algebras.Semisimple: 

category = category.Semisimple() 

center = self.submodule(self.center_basis(), 

category=category, 

already_echelonized=True) 

center.rename("Center of {}".format(self)) 

return center 

 

def principal_ideal(self, a, side='left'): 

r""" 

Construct the ``side`` principal ideal generated by ``a``. 

 

EXAMPLES: 

 

In order to highlight the difference between left and 

right principal ideals, our first example deals with a non 

commutative algebra:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A 

An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

sage: x, y, a, b = A.basis() 

 

In this algebra, multiplication on the right by `x` 

annihilates all basis elements but `x`:: 

 

sage: x*x, y*x, a*x, b*x 

(x, 0, 0, 0) 

 

so the left ideal generated by `x` is one-dimensional:: 

 

sage: Ax = A.principal_ideal(x, side='left'); Ax 

Free module generated by {0} over Rational Field 

sage: [B.lift() for B in Ax.basis()] 

[x] 

 

Multiplication on the left by `x` annihilates 

only `x` and fixes the other basis elements:: 

 

sage: x*x, x*y, x*a, x*b 

(x, 0, a, b) 

 

so the right ideal generated by `x` is 3-dimensional:: 

 

sage: xA = A.principal_ideal(x, side='right'); xA 

Free module generated by {0, 1, 2} over Rational Field 

sage: [B.lift() for B in xA.basis()] 

[x, a, b] 

 

.. SEEALSO:: 

 

- :meth:`peirce_summand` 

""" 

return self.submodule([(a * b if side=='right' else b * a) 

for b in self.basis()]) 

 

@cached_method 

def orthogonal_idempotents_central_mod_radical(self): 

r""" 

Return a family of orthogonal idempotents of ``self`` that project 

on the central orthogonal idempotents of the semisimple quotient. 

 

OUTPUT: 

 

- a list of orthogonal idempotents obtained by lifting the central 

orthogonal idempotents of the semisimple quotient. 

 

ALGORITHM: 

 

The orthogonal idempotents of `A` are obtained by lifting the 

central orthogonal idempotents of the semisimple quotient 

`\overline{A}`. 

 

Namely, let `(\overline{f_i})` be the central orthogonal 

idempotents of the semisimple quotient of `A`. We 

recursively construct orthogonal idempotents of `A` by the 

following procedure: assuming `(f_i)_{i < n}` is a set of 

already constructed orthogonal idempotent, we construct 

`f_k` by idempotent lifting of `(1-f) g (1-f)`, where `g` 

is any lift of `\overline{e_k}` and `f=\sum_{i<k} f_i`. 

 

See [CR1962]_ for correctness and termination proofs. 

 

.. SEEALSO:: 

 

- :meth:`Algebras.SemiSimple.FiniteDimensional.WithBasis.ParentMethods.central_orthogonal_idempotents` 

- :meth:`idempotent_lift` 

 

EXAMPLES:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A 

An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

sage: A.orthogonal_idempotents_central_mod_radical() 

(x, y) 

 

:: 

 

sage: Z12 = Monoids().Finite().example(); Z12 

An example of a finite multiplicative monoid: the integers modulo 12 

sage: A = Z12.algebra(QQ) 

sage: idempotents = A.orthogonal_idempotents_central_mod_radical() 

sage: sorted(idempotents, key=str) 

[-1/2*B[8] + 1/2*B[4], 

-B[0] + 1/2*B[8] + 1/2*B[4], 

-B[0] + 1/2*B[9] + 1/2*B[3], 

1/2*B[9] - 1/2*B[3], 

1/4*B[1] + 1/2*B[3] + 1/4*B[5] - 1/4*B[7] - 1/2*B[9] - 1/4*B[11], 

1/4*B[1] + 1/4*B[11] - 1/4*B[5] - 1/4*B[7], 

1/4*B[1] - 1/2*B[4] - 1/4*B[5] + 1/4*B[7] + 1/2*B[8] - 1/4*B[11], 

B[0], 

B[0] + 1/4*B[1] - 1/2*B[3] - 1/2*B[4] + 1/4*B[5] + 1/4*B[7] - 1/2*B[8] - 1/2*B[9] + 1/4*B[11]] 

sage: sum(idempotents) == 1 

True 

sage: all(e*e == e for e in idempotents) 

True 

sage: all(e*f == 0 and f*e == 0 for e in idempotents for f in idempotents if e != f) 

True 

 

This is best tested with:: 

 

sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents) 

True 

 

We construct orthogonal idempotents for the algebra of the 

`0`-Hecke monoid:: 

 

sage: from sage.monoids.hecke_monoid import HeckeMonoid 

sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ) 

sage: idempotents = A.orthogonal_idempotents_central_mod_radical() 

sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents) 

True 

""" 

one = self.one() 

# Construction of the orthogonal idempotents 

idempotents = [] 

f = self.zero() 

for g in self.semisimple_quotient().central_orthogonal_idempotents(): 

fi = self.idempotent_lift((one - f) * g.lift() * (one - f)) 

idempotents.append(fi) 

f = f + fi 

return tuple(idempotents) 

 

def idempotent_lift(self, x): 

r""" 

Lift an idempotent of the semisimple quotient into an idempotent of ``self``. 

 

Let `A` be this finite dimensional algebra and `\pi` be 

the projection `A \rightarrow \overline{A}` on its 

semisimple quotient. Let `\overline{x}` be an idempotent 

of `\overline A`, and `x` any lift thereof in `A`. This 

returns an idempotent `e` of `A` such that `\pi(e)=\pi(x)` 

and `e` is a polynomial in `x`. 

 

INPUT: 

 

- `x` -- an element of `A` that projects on an idempotent 

`\overline x` of the semisimple quotient of `A`. 

Alternatively one may give as input the idempotent 

`\overline{x}`, in which case some lift thereof will be 

taken for `x`. 

 

OUTPUT: the idempotent `e` of ``self`` 

 

ALGORITHM: 

 

Iterate the formula `1 - (1 - x^2)^2` until having an 

idempotent. 

 

See [CR1962]_ for correctness and termination proofs. 

 

EXAMPLES:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example() 

sage: S = A.semisimple_quotient() 

sage: A.idempotent_lift(S.basis()['x']) 

x 

sage: A.idempotent_lift(A.basis()['y']) 

y 

 

.. TODO:: 

 

Add some non trivial example 

""" 

if not self.is_parent_of(x): 

x = x.lift() 

p = self.semisimple_quotient().retract(x) 

if p * p != p: 

raise ValueError("%s does not retract to an idempotent."%p) 

x_prev = None 

one = self.one() 

while x != x_prev: 

tmp = x 

x = (one - (one - x**2)**2) 

x_prev = tmp 

return x 

 

@cached_method 

def cartan_invariants_matrix(self): 

r""" 

Return the Cartan invariants matrix of the algebra. 

 

OUTPUT: a matrix of non negative integers 

 

Let `A` be this finite dimensional algebra and 

`(S_i)_{i\in I}` be representatives of the right simple 

modules of `A`. Note that their adjoints `S_i^*` are 

representatives of the left simple modules. 

 

Let `(P^L_i)_{i\in I}` and `(P^R_i)_{i\in I}` be 

respectively representatives of the corresponding 

indecomposable projective left and right modules of `A`. 

In particular, we assume that the indexing is consistent 

so that `S_i^*=\operatorname{top} P^L_i` and 

`S_i=\operatorname{top} P^R_i`. 

 

The *Cartan invariant matrix* `(C_{i,j})_{i,j\in I}` is a 

matrix of non negative integers that encodes much of the 

representation theory of `A`; namely: 

 

- `C_{i,j}` counts how many times `S_i^*\otimes S_j` 

appears as composition factor of `A` seen as a bimodule 

over itself; 

 

- `C_{i,j}=\dim Hom_A(P^R_j, P^R_i)`; 

 

- `C_{i,j}` counts how many times `S_j` appears as 

composition factor of `P^R_i`; 

 

- `C_{i,j}=\dim Hom_A(P^L_i, P^L_j)`; 

 

- `C_{i,j}` counts how many times `S_i^*` appears as 

composition factor of `P^L_j`. 

 

In the commutative case, the Cartan invariant matrix is 

diagonal. In the context of solving systems of 

multivariate polynomial equations of dimension zero, `A` 

is the quotient of the polynomial ring by the ideal 

generated by the equations, the simple modules correspond 

to the roots, and the numbers `C_{i,i}` give the 

multiplicities of those roots. 

 

.. NOTE:: 

 

For simplicity, the current implementation assumes 

that the index set `I` is of the form 

`\{0,\dots,n-1\}`. Better indexations will be possible 

in the future. 

 

ALGORITHM: 

 

The Cartan invariant matrix of `A` is computed from the 

dimension of the summands of its Peirce decomposition. 

 

.. SEEALSO:: 

 

- :meth:`peirce_decomposition` 

- :meth:`isotypic_projective_modules` 

 

EXAMPLES: 

 

For a semisimple algebra, in particular for group algebras 

in characteristic zero, the Cartan invariants matrix is 

the identity:: 

 

sage: A3 = SymmetricGroup(3).algebra(QQ) 

sage: A3.cartan_invariants_matrix() 

[1 0 0] 

[0 1 0] 

[0 0 1] 

 

For the path algebra of a quiver, the Cartan invariants 

matrix counts the number of paths between two vertices:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example() 

sage: A.cartan_invariants_matrix() 

[1 2] 

[0 1] 

 

In the commutative case, the Cartan invariant matrix is diagonal:: 

 

sage: Z12 = Monoids().Finite().example(); Z12 

An example of a finite multiplicative monoid: the integers modulo 12 

sage: A = Z12.algebra(QQ) 

sage: A.cartan_invariants_matrix() 

[1 0 0 0 0 0 0 0 0] 

[0 1 0 0 0 0 0 0 0] 

[0 0 2 0 0 0 0 0 0] 

[0 0 0 1 0 0 0 0 0] 

[0 0 0 0 2 0 0 0 0] 

[0 0 0 0 0 1 0 0 0] 

[0 0 0 0 0 0 1 0 0] 

[0 0 0 0 0 0 0 2 0] 

[0 0 0 0 0 0 0 0 1] 

 

With the algebra of the `0`-Hecke monoid:: 

 

sage: from sage.monoids.hecke_monoid import HeckeMonoid 

sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ) 

sage: A.cartan_invariants_matrix() 

[1 0 0 0 0 0 0 0] 

[0 2 1 0 1 1 0 0] 

[0 1 1 0 1 0 0 0] 

[0 0 0 1 0 1 1 0] 

[0 1 1 0 1 0 0 0] 

[0 1 0 1 0 2 1 0] 

[0 0 0 1 0 1 1 0] 

[0 0 0 0 0 0 0 1] 

""" 

from sage.rings.integer_ring import ZZ 

A_quo = self.semisimple_quotient() 

idempotents_quo = A_quo.central_orthogonal_idempotents() 

# Dimension of simple modules 

dim_simples = [A_quo.principal_ideal(e).dimension().sqrt() 

for e in idempotents_quo] 

# Orthogonal idempotents 

idempotents = self.orthogonal_idempotents_central_mod_radical() 

def C(i,j): 

summand = self.peirce_summand(idempotents[i], idempotents[j]) 

return summand.dimension() / (dim_simples[i]*dim_simples[j]) 

m = Matrix(ZZ, len(idempotents), C) 

m.set_immutable() 

return m 

 

def isotypic_projective_modules(self, side='left'): 

r""" 

Return the isotypic projective ``side`` ``self``-modules. 

 

Let `P_i` be representatives of the indecomposable 

projective ``side``-modules of this finite dimensional 

algebra `A`, and `S_i` be the associated simple modules. 

 

The regular ``side`` representation of `A` can be 

decomposed as a direct sum `A = \bigoplus_i Q_i` where 

each `Q_i` is an isotypic projective module; namely `Q_i` 

is the direct sum of `\dim S_i` copies of the 

indecomposable projective module `P_i`. This decomposition 

is not unique. 

 

The isotypic projective modules are constructed as 

`Q_i=e_iA`, where the `(e_i)_i` is the decomposition of 

the identity into orthogonal idempotents obtained by 

lifting the central orthogonal idempotents of the 

semisimple quotient of `A`. 

 

INPUT: 

 

- ``side`` -- 'left' or 'right' (default: 'left') 

 

OUTPUT: a list of subspaces of ``self``. 

 

EXAMPLES:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A 

An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

sage: Q = A.isotypic_projective_modules(side="left"); Q 

[Free module generated by {0} over Rational Field, 

Free module generated by {0, 1, 2} over Rational Field] 

sage: [[x.lift() for x in Qi.basis()] 

....: for Qi in Q] 

[[x], 

[y, a, b]] 

 

We check that the sum of the dimensions of the isotypic 

projective modules is the dimension of ``self``:: 

 

sage: sum([Qi.dimension() for Qi in Q]) == A.dimension() 

True 

 

.. SEEALSO:: 

 

- :meth:`orthogonal_idempotents_central_mod_radical` 

- :meth:`peirce_decomposition` 

""" 

return [self.principal_ideal(e, side) for e in 

self.orthogonal_idempotents_central_mod_radical()] 

 

@cached_method 

def peirce_summand(self, ei, ej): 

r""" 

Return the Peirce decomposition summand `e_i A e_j`. 

 

INPUT: 

 

- ``self`` -- an algebra `A` 

 

- ``ei``, ``ej`` -- two idempotents of `A` 

 

OUTPUT: `e_i A e_j`, as a subspace of `A`. 

 

.. SEEALSO:: 

 

- :meth:`peirce_decomposition` 

- :meth:`principal_ideal` 

 

EXAMPLES:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example() 

sage: idemp = A.orthogonal_idempotents_central_mod_radical() 

sage: A.peirce_summand(idemp[0], idemp[1]) 

Free module generated by {0, 1} over Rational Field 

sage: A.peirce_summand(idemp[1], idemp[0]) 

Free module generated by {} over Rational Field 

 

We recover the `2\times2` block of `\QQ[S_4]` 

corresponding to the unique simple module of dimension `2` 

of the symmetric group `S_4`:: 

 

sage: A4 = SymmetricGroup(4).algebra(QQ) 

sage: e = A4.central_orthogonal_idempotents()[2] 

sage: A4.peirce_summand(e, e) 

Free module generated by {0, 1, 2, 3} over Rational Field 

 

TESTS: 

 

We check each idempotent belong to its own Peirce summand 

(see :trac:`24687`):: 

 

sage: from sage.monoids.hecke_monoid import HeckeMonoid 

sage: M = HeckeMonoid(SymmetricGroup(4)) 

sage: A = M.algebra(QQ) 

sage: Idms = A.orthogonal_idempotents_central_mod_radical() 

sage: all(A.peirce_summand(e, e).retract(e) 

....: in A.peirce_summand(e, e) for e in Idms) 

True 

""" 

B = self.basis() 

phi = self.module_morphism(on_basis=lambda k: ei * B[k] * ej, 

codomain=self, triangular='lower') 

ideal = phi.matrix(side='right').image() 

 

return self.submodule([self.from_vector(v) for v in ideal.basis()], 

already_echelonized=True) 

 

 

def peirce_decomposition(self, idempotents=None, check=True): 

r""" 

Return a Peirce decomposition of ``self``. 

 

Let `(e_i)_i` be a collection of orthogonal idempotents of 

`A` with sum `1`. The *Peirce decomposition* of `A` is the 

decomposition of `A` into the direct sum of the subspaces 

`e_i A e_j`. 

 

With the default collection of orthogonal idempotents, one has 

 

.. MATH:: 

 

\dim e_i A e_j = C_{i,j} \dim S_i \dim S_j 

 

where `(S_i)_i` are the simple modules of `A` and 

`(C_{i,j})_{i, j}` is the Cartan invariants matrix. 

 

INPUT: 

 

- ``idempotents`` -- a list of orthogonal idempotents 

`(e_i)_{i=0,\ldots,n}` of the algebra that sum to `1` 

(default: the idempotents returned by 

:meth:`orthogonal_idempotents_central_mod_radical`) 

 

- ``check`` -- (default: ``True``) whether to check that the 

idempotents are indeed orthogonal and idempotent and 

sum to `1` 

 

OUTPUT: 

 

A list of lists `l` such that ``l[i][j]`` is the subspace 

`e_i A e_j`. 

 

.. SEEALSO:: 

 

- :meth:`orthogonal_idempotents_central_mod_radical` 

- :meth:`cartan_invariants_matrix` 

 

EXAMPLES:: 

 

sage: A = Algebras(QQ).FiniteDimensional().WithBasis().example(); A 

An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

sage: A.orthogonal_idempotents_central_mod_radical() 

(x, y) 

sage: decomposition = A.peirce_decomposition(); decomposition 

[[Free module generated by {0} over Rational Field, 

Free module generated by {0, 1} over Rational Field], 

[Free module generated by {} over Rational Field, 

Free module generated by {0} over Rational Field]] 

sage: [ [[x.lift() for x in decomposition[i][j].basis()] 

....: for j in range(2)] 

....: for i in range(2)] 

[[[x], [a, b]], 

[[], [y]]] 

 

We recover that the group algebra of the symmetric group 

`S_4` is a block matrix algebra:: 

 

sage: A = SymmetricGroup(4).algebra(QQ) 

sage: decomposition = A.peirce_decomposition() # long time 

sage: [[decomposition[i][j].dimension() # long time (4s) 

....: for j in range(len(decomposition))] 

....: for i in range(len(decomposition))] 

[[1, 0, 0, 0, 0], 

[0, 9, 0, 0, 0], 

[0, 0, 4, 0, 0], 

[0, 0, 0, 9, 0], 

[0, 0, 0, 0, 1]] 

 

The dimension of each block is `d^2`, where `d` is the 

dimension of the corresponding simple module of `S_4`. The 

latter are given by:: 

 

sage: [p.standard_tableaux().cardinality() for p in Partitions(4)] 

[1, 3, 2, 3, 1] 

""" 

if idempotents is None: 

idempotents = self.orthogonal_idempotents_central_mod_radical() 

if check: 

if not self.is_identity_decomposition_into_orthogonal_idempotents(idempotents): 

raise ValueError("Not a decomposition of the identity into orthogonal idempotents") 

return [[self.peirce_summand(ei, ej) for ej in idempotents] 

for ei in idempotents] 

 

def is_identity_decomposition_into_orthogonal_idempotents(self, l): 

r""" 

Return whether ``l`` is a decomposition of the identity 

into orthogonal idempotents. 

 

INPUT: 

 

- ``l`` -- a list or iterable of elements of ``self`` 

 

EXAMPLES:: 

 

sage: A = FiniteDimensionalAlgebrasWithBasis(QQ).example(); A 

An example of a finite dimensional algebra with basis: 

the path algebra of the Kronecker quiver 

(containing the arrows a:x->y and b:x->y) over Rational Field 

 

sage: x,y,a,b = A.algebra_generators(); x,y,a,b 

(x, y, a, b) 

 

sage: A.is_identity_decomposition_into_orthogonal_idempotents([A.one()]) 

True 

sage: A.is_identity_decomposition_into_orthogonal_idempotents([x,y]) 

True 

sage: A.is_identity_decomposition_into_orthogonal_idempotents([x+a, y-a]) 

True 

 

Here the idempotents do not sum up to `1`:: 

 

sage: A.is_identity_decomposition_into_orthogonal_idempotents([x]) 

False 

 

Here `1+x` and `-x` are neither idempotent nor orthogonal:: 

 

sage: A.is_identity_decomposition_into_orthogonal_idempotents([1+x,-x]) 

False 

 

With the algebra of the `0`-Hecke monoid:: 

 

sage: from sage.monoids.hecke_monoid import HeckeMonoid 

sage: A = HeckeMonoid(SymmetricGroup(4)).algebra(QQ) 

sage: idempotents = A.orthogonal_idempotents_central_mod_radical() 

sage: A.is_identity_decomposition_into_orthogonal_idempotents(idempotents) 

True 

 

Here are some more counterexamples: 

 

1. Some orthogonal elements summing to `1` but not being 

idempotent:: 

 

sage: class PQAlgebra(CombinatorialFreeModule): 

....: def __init__(self, F, p): 

....: # Construct the quotient algebra F[x] / p, 

....: # where p is a univariate polynomial. 

....: R = parent(p); x = R.gen() 

....: I = R.ideal(p) 

....: self._xbar = R.quotient(I).gen() 

....: basis_keys = [self._xbar**i for i in range(p.degree())] 

....: CombinatorialFreeModule.__init__(self, F, basis_keys, 

....: category=Algebras(F).FiniteDimensional().WithBasis()) 

....: def x(self): 

....: return self(self._xbar) 

....: def one(self): 

....: return self.basis()[self.base_ring().one()] 

....: def product_on_basis(self, w1, w2): 

....: return self.from_vector(vector(w1*w2)) 

sage: R.<x> = PolynomialRing(QQ) 

sage: A = PQAlgebra(QQ, x**3 - x**2 + x + 1); y = A.x() 

sage: a, b = y, 1-y 

sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b)) 

False 

 

For comparison:: 

 

sage: A = PQAlgebra(QQ, x**2 - x); y = A.x() 

sage: a, b = y, 1-y 

sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b)) 

True 

sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, A.zero(), b)) 

True 

sage: A = PQAlgebra(QQ, x**3 - x**2 + x - 1); y = A.x() 

sage: a = (y**2 + 1) / 2 

sage: b = 1 - a 

sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, b)) 

True 

 

2. Some idempotents summing to 1 but not orthogonal:: 

 

sage: R.<x> = PolynomialRing(GF(2)) 

sage: A = PQAlgebra(GF(2), x) 

sage: a = A.one() 

sage: A.is_identity_decomposition_into_orthogonal_idempotents((a,)) 

True 

sage: A.is_identity_decomposition_into_orthogonal_idempotents((a, a, a)) 

False 

 

3. Some orthogonal idempotents not summing to the identity:: 

 

sage: A.is_identity_decomposition_into_orthogonal_idempotents((a,a)) 

False 

sage: A.is_identity_decomposition_into_orthogonal_idempotents(()) 

False 

""" 

return (self.sum(l) == self.one() 

and all(e*e == e for e in l) 

and all(e*f == 0 and f*e == 0 for i, e in enumerate(l) 

for f in l[:i])) 

 

@cached_method 

def is_commutative(self): 

""" 

Return whether ``self`` is a commutative algebra. 

 

EXAMPLES:: 

 

sage: S4 = SymmetricGroupAlgebra(QQ, 4) 

sage: S4.is_commutative() 

False 

sage: S2 = SymmetricGroupAlgebra(QQ, 2) 

sage: S2.is_commutative() 

True 

""" 

B = list(self.basis()) 

try: # See if 1 is a basis element, if so, remove it 

B.remove(self.one()) 

except ValueError: 

pass 

return all(b*bp == bp*b for i,b in enumerate(B) for bp in B[i+1:]) 

 

class ElementMethods: 

 

def to_matrix(self, base_ring=None, action=operator.mul, side='left'): 

""" 

Return the matrix of the action of ``self`` on the algebra. 

 

INPUT: 

 

- ``base_ring`` -- the base ring for the matrix to be constructed 

- ``action`` -- a bivariate function (default: :func:`operator.mul`) 

- ``side`` -- 'left' or 'right' (default: 'left') 

 

EXAMPLES:: 

 

sage: QS3 = SymmetricGroupAlgebra(QQ, 3) 

sage: a = QS3([2,1,3]) 

sage: a.to_matrix(side='left') 

[0 0 1 0 0 0] 

[0 0 0 0 1 0] 

[1 0 0 0 0 0] 

[0 0 0 0 0 1] 

[0 1 0 0 0 0] 

[0 0 0 1 0 0] 

sage: a.to_matrix(side='right') 

[0 0 1 0 0 0] 

[0 0 0 1 0 0] 

[1 0 0 0 0 0] 

[0 1 0 0 0 0] 

[0 0 0 0 0 1] 

[0 0 0 0 1 0] 

sage: a.to_matrix(base_ring=RDF, side="left") 

[0.0 0.0 1.0 0.0 0.0 0.0] 

[0.0 0.0 0.0 0.0 1.0 0.0] 

[1.0 0.0 0.0 0.0 0.0 0.0] 

[0.0 0.0 0.0 0.0 0.0 1.0] 

[0.0 1.0 0.0 0.0 0.0 0.0] 

[0.0 0.0 0.0 1.0 0.0 0.0] 

 

AUTHORS: Mike Hansen, ... 

""" 

basis = self.parent().basis() 

action_left = action 

if side == 'right': 

action = lambda x: action_left(basis[x], self) 

else: 

action = lambda x: action_left(self, basis[x]) 

endo = self.parent().module_morphism(on_basis=action, codomain=self.parent()) 

return endo.matrix(base_ring=base_ring) 

 

_matrix_ = to_matrix # For temporary backward compatibility 

on_left_matrix = to_matrix