Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

# -*- coding: utf-8 -*- 

r""" 

Finite Permutation Groups 

""" 

#***************************************************************************** 

# Copyright (C) 2010 Nicolas M. Thiery <nthiery at users.sf.net> 

# Nicolas Borie <Nicolas.Borie at u-pusd.fr> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# http://www.gnu.org/licenses/ 

#****************************************************************************** 

 

from sage.categories.magmas import Magmas 

from sage.categories.category_with_axiom import CategoryWithAxiom 

from sage.categories.permutation_groups import PermutationGroups 

 

class FinitePermutationGroups(CategoryWithAxiom): 

r""" 

The category of finite permutation groups, i.e. groups concretely 

represented as groups of permutations acting on a finite set. 

 

It is currently assumed that any finite permutation group comes 

endowed with a distinguished finite set of generators (method 

``group_generators``); this is the case for all the existing 

implementations in Sage. 

 

EXAMPLES:: 

 

sage: C = PermutationGroups().Finite(); C 

Category of finite enumerated permutation groups 

sage: C.super_categories() 

[Category of permutation groups, 

Category of finite groups, 

Category of finite finitely generated semigroups] 

 

sage: C.example() 

Dihedral group of order 6 as a permutation group 

 

TESTS:: 

 

sage: C is FinitePermutationGroups() 

True 

sage: TestSuite(C).run() 

 

sage: G = FinitePermutationGroups().example() 

sage: TestSuite(G).run(verbose = True) 

running ._test_an_element() . . . pass 

running ._test_associativity() . . . pass 

running ._test_cardinality() . . . pass 

running ._test_category() . . . pass 

running ._test_elements() . . . 

Running the test suite of self.an_element() 

running ._test_category() . . . pass 

running ._test_eq() . . . pass 

running ._test_new() . . . pass 

running ._test_not_implemented_methods() . . . pass 

running ._test_pickling() . . . pass 

pass 

running ._test_elements_eq_reflexive() . . . pass 

running ._test_elements_eq_symmetric() . . . pass 

running ._test_elements_eq_transitive() . . . pass 

running ._test_elements_neq() . . . pass 

running ._test_enumerated_set_contains() . . . pass 

running ._test_enumerated_set_iter_cardinality() . . . pass 

running ._test_enumerated_set_iter_list() . . . pass 

running ._test_eq() . . . pass 

running ._test_inverse() . . . pass 

running ._test_new() . . . pass 

running ._test_not_implemented_methods() . . . pass 

running ._test_one() . . . pass 

running ._test_pickling() . . . pass 

running ._test_prod() . . . pass 

running ._test_some_elements() . . . pass 

""" 

 

def example(self): 

""" 

Returns an example of finite permutation group, as per 

:meth:`Category.example`. 

 

EXAMPLES:: 

 

sage: G = FinitePermutationGroups().example(); G 

Dihedral group of order 6 as a permutation group 

""" 

from sage.groups.perm_gps.permgroup_named import DihedralGroup 

return DihedralGroup(3) 

 

def extra_super_categories(self): 

""" 

Any permutation group is assumed to be endowed with a finite set of generators. 

 

TESTS: 

 

sage: PermutationGroups().Finite().extra_super_categories() 

[Category of finitely generated magmas] 

""" 

return [Magmas().FinitelyGenerated()] 

 

class ParentMethods: 

# TODO 

# - Port features from MuPAD-Combinat, lib/DOMAINS/CATEGORIES/PermutationGroup.mu 

# - Move here generic code from sage/groups/perm_gps/permgroup.py 

 

def cycle_index(self, parent = None): 

r""" 

Return the *cycle index* of ``self``. 

 

INPUT: 

 

- ``self`` - a permutation group `G` 

- ``parent`` -- a free module with basis indexed by partitions, 

or behave as such, with a ``term`` and ``sum`` method 

(default: the symmetric functions over the rational field in the `p` basis) 

 

The *cycle index* of a permutation group `G` 

(:wikipedia:`Cycle_index`) is a gadget counting the 

elements of `G` by cycle type, averaged over the group: 

 

.. MATH:: 

 

P = \frac{1}{|G|} \sum_{g\in G} p_{ \operatorname{cycle\ type}(g) } 

 

EXAMPLES: 

 

Among the permutations of the symmetric group `S_4`, there is 

the identity, 6 cycles of length 2, 3 products of two cycles 

of length 2, 8 cycles of length 3, and 6 cycles of length 4:: 

 

sage: S4 = SymmetricGroup(4) 

sage: P = S4.cycle_index() 

sage: 24 * P 

p[1, 1, 1, 1] + 6*p[2, 1, 1] + 3*p[2, 2] + 8*p[3, 1] + 6*p[4] 

 

If `l = (l_1,\dots,l_k)` is a partition, ``|G| P[l]`` is the number 

of elements of `G` with cycles of length `(p_1,\dots,p_k)`:: 

 

sage: 24 * P[ Partition([3,1]) ] 

8 

 

The cycle index plays an important role in the enumeration of 

objects modulo the action of a group (Pólya enumeration), via 

the use of symmetric functions and plethysms. It is therefore 

encoded as a symmetric function, expressed in the powersum 

basis:: 

 

sage: P.parent() 

Symmetric Functions over Rational Field in the powersum basis 

 

This symmetric function can have some nice properties; for 

example, for the symmetric group `S_n`, we get the complete 

symmetric function `h_n`:: 

 

sage: S = SymmetricFunctions(QQ); h = S.h() 

sage: h( P ) 

h[4] 

 

.. TODO:: 

 

Add some simple examples of Pólya enumeration, once 

it will be easy to expand symmetric functions on any 

alphabet. 

 

Here are the cycle indices of some permutation groups:: 

 

sage: 6 * CyclicPermutationGroup(6).cycle_index() 

p[1, 1, 1, 1, 1, 1] + p[2, 2, 2] + 2*p[3, 3] + 2*p[6] 

 

sage: 60 * AlternatingGroup(5).cycle_index() 

p[1, 1, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] + 24*p[5] 

 

sage: for G in TransitiveGroups(5): # optional - database_gap # long time 

....: G.cardinality() * G.cycle_index() 

p[1, 1, 1, 1, 1] + 4*p[5] 

p[1, 1, 1, 1, 1] + 5*p[2, 2, 1] + 4*p[5] 

p[1, 1, 1, 1, 1] + 5*p[2, 2, 1] + 10*p[4, 1] + 4*p[5] 

p[1, 1, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] + 24*p[5] 

p[1, 1, 1, 1, 1] + 10*p[2, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] + 20*p[3, 2] + 30*p[4, 1] + 24*p[5] 

 

Permutation groups with arbitrary domains are supported 

(see :trac:`22765`):: 

 

sage: G = PermutationGroup([['b','c','a']], domain=['a','b','c']) 

sage: G.cycle_index() 

1/3*p[1, 1, 1] + 2/3*p[3] 

 

One may specify another parent for the result:: 

 

sage: F = CombinatorialFreeModule(QQ, Partitions()) 

sage: P = CyclicPermutationGroup(6).cycle_index(parent = F) 

sage: 6 * P 

B[[1, 1, 1, 1, 1, 1]] + B[[2, 2, 2]] + 2*B[[3, 3]] + 2*B[[6]] 

sage: P.parent() is F 

True 

 

This parent should be a module with basis indexed by partitions:: 

 

sage: CyclicPermutationGroup(6).cycle_index(parent = QQ) 

Traceback (most recent call last): 

... 

ValueError: `parent` should be a module with basis indexed by partitions 

 

REFERENCES: 

 

- [Ke1991]_ 

 

AUTHORS: 

 

- Nicolas Borie and Nicolas M. Thiéry 

 

TESTS:: 

 

sage: P = PermutationGroup([]); P 

Permutation Group with generators [()] 

sage: P.cycle_index() 

p[1] 

sage: P = PermutationGroup([[(1)]]); P 

Permutation Group with generators [()] 

sage: P.cycle_index() 

p[1] 

""" 

from sage.categories.modules import Modules 

if parent is None: 

from sage.rings.rational_field import QQ 

from sage.combinat.sf.sf import SymmetricFunctions 

parent = SymmetricFunctions(QQ).powersum() 

elif not parent in Modules.WithBasis: 

raise ValueError("`parent` should be a module with basis indexed by partitions") 

base_ring = parent.base_ring() 

return parent.sum_of_terms([C.an_element().cycle_type(), base_ring(C.cardinality())] 

for C in self.conjugacy_classes() 

) / self.cardinality() 

 

class ElementMethods: 

# TODO: put abstract_methods for 

# - cycle_type 

# - orbit 

# - ... 

pass