Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

""" 

Functors 

  

AUTHORS: 

  

- David Kohel and William Stein 

  

- David Joyner (2005-12-17): examples 

  

- Robert Bradshaw (2007-06-23): Pyrexify 

  

- Simon King (2010-04-30): more examples, several bug fixes, 

re-implementation of the default call method, 

making functors applicable to morphisms (not only to objects) 

  

- Simon King (2010-12): Pickling of functors without loosing domain and codomain 

  

""" 

  

#***************************************************************************** 

# Copyright (C) 2005 David Kohel <kohel@maths.usyd.edu> and 

# William Stein <wstein@math.ucsd.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty 

# of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 

# 

# See the GNU General Public License for more details; the full text 

# is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import absolute_import 

  

from . import category 

  

  

def _Functor_unpickle(Cl, D, domain, codomain): 

""" 

Generic unpickling function for functors. 

  

AUTHOR: 

  

- Simon King (2010-12): :trac:`10460` 

  

EXAMPLES:: 

  

sage: R.<x,y> = InfinitePolynomialRing(QQ) 

sage: F = R.construction()[0] 

sage: F == loads(dumps(F)) 

True 

sage: F.domain(), loads(dumps(F)).domain() 

(Category of rings, Category of rings) 

  

""" 

F = Functor.__new__(Cl) 

Functor.__init__(F,domain,codomain) 

for s,v in D: 

setattr(F,s,v) 

return F 

  

cdef class Functor(SageObject): 

""" 

A class for functors between two categories 

  

NOTE: 

  

- In the first place, a functor is given by its domain and codomain, 

which are both categories. 

- When defining a sub-class, the user should not implement a call method. 

Instead, one should implement three methods, which are composed in the 

default call method: 

  

- ``_coerce_into_domain(self, x)``: Return an object of ``self``'s 

domain, corresponding to ``x``, or raise a ``TypeError``. 

  

- Default: Raise ``TypeError`` if ``x`` is not in ``self``'s domain. 

  

- ``_apply_functor(self, x)``: Apply ``self`` to an object ``x`` of 

``self``'s domain. 

  

- Default: Conversion into ``self``'s codomain. 

  

- ``_apply_functor_to_morphism(self, f)``: Apply ``self`` to a morphism 

``f`` in ``self``'s domain. 

- Default: Return ``self(f.domain()).hom(f,self(f.codomain()))``. 

  

EXAMPLES:: 

  

sage: rings = Rings() 

sage: abgrps = CommutativeAdditiveGroups() 

sage: F = ForgetfulFunctor(rings, abgrps) 

sage: F.domain() 

Category of rings 

sage: F.codomain() 

Category of commutative additive groups 

sage: from sage.categories.functor import is_Functor 

sage: is_Functor(F) 

True 

sage: I = IdentityFunctor(abgrps) 

sage: I 

The identity functor on Category of commutative additive groups 

sage: I.domain() 

Category of commutative additive groups 

sage: is_Functor(I) 

True 

  

Note that by default, an instance of the class Functor is coercion 

from the domain into the codomain. The above subclasses overloaded 

this behaviour. Here we illustrate the default:: 

  

sage: from sage.categories.functor import Functor 

sage: F = Functor(Rings(),Fields()) 

sage: F 

Functor from Category of rings to Category of fields 

sage: F(ZZ) 

Rational Field 

sage: F(GF(2)) 

Finite Field of size 2 

  

Functors are not only about the objects of a category, but also about 

their morphisms. We illustrate it, again, with the coercion functor 

from rings to fields. 

  

:: 

  

sage: R1.<x> = ZZ[] 

sage: R2.<a,b> = QQ[] 

sage: f = R1.hom([a+b],R2) 

sage: f 

Ring morphism: 

From: Univariate Polynomial Ring in x over Integer Ring 

To: Multivariate Polynomial Ring in a, b over Rational Field 

Defn: x |--> a + b 

sage: F(f) 

Ring morphism: 

From: Fraction Field of Univariate Polynomial Ring in x over Integer Ring 

To: Fraction Field of Multivariate Polynomial Ring in a, b over Rational Field 

Defn: x |--> a + b 

sage: F(f)(1/x) 

1/(a + b) 

  

We can also apply a polynomial ring construction functor to our homomorphism. The 

result is a homomorphism that is defined on the base ring:: 

  

sage: F = QQ['t'].construction()[0] 

sage: F 

Poly[t] 

sage: F(f) 

Ring morphism: 

From: Univariate Polynomial Ring in t over Univariate Polynomial Ring in x over Integer Ring 

To: Univariate Polynomial Ring in t over Multivariate Polynomial Ring in a, b over Rational Field 

Defn: Induced from base ring by 

Ring morphism: 

From: Univariate Polynomial Ring in x over Integer Ring 

To: Multivariate Polynomial Ring in a, b over Rational Field 

Defn: x |--> a + b 

sage: p = R1['t']('(-x^2 + x)*t^2 + (x^2 - x)*t - 4*x^2 - x + 1') 

sage: F(f)(p) 

(-a^2 - 2*a*b - b^2 + a + b)*t^2 + (a^2 + 2*a*b + b^2 - a - b)*t - 4*a^2 - 8*a*b - 4*b^2 - a - b + 1 

  

""" 

def __init__(self, domain, codomain): 

""" 

TESTS:: 

  

sage: from sage.categories.functor import Functor 

sage: F = Functor(Rings(),Fields()) 

sage: F 

Functor from Category of rings to Category of fields 

sage: F(ZZ) 

Rational Field 

sage: F(GF(2)) 

Finite Field of size 2 

  

""" 

if not category.is_Category(domain): 

raise TypeError("domain (=%s) must be a category" % domain) 

if not category.is_Category(codomain): 

raise TypeError("codomain (=%s) must be a category" % codomain) 

self.__domain = domain 

self.__codomain = codomain 

  

def __hash__(self): 

r""" 

TESTS:: 

  

sage: from sage.categories.functor import Functor 

sage: F = Functor(Rings(), Fields()) 

sage: hash(F) # random 

42 

""" 

return hash(self.__domain) ^ hash(self.__codomain) 

  

def __reduce__(self): 

""" 

Generic pickling of functors. 

  

AUTHOR: 

  

- Simon King (2010-12): :trac:`10460` 

  

TESTS:: 

  

sage: from sage.categories.pushout import CompositeConstructionFunctor 

sage: F = CompositeConstructionFunctor(QQ.construction()[0],ZZ['x'].construction()[0],QQ.construction()[0],ZZ['y'].construction()[0]) 

sage: F == loads(dumps(F)) 

True 

sage: F.codomain() 

Category of rings 

  

""" 

return _Functor_unpickle, (self.__class__, self.__dict__.items(), self.__domain, self.__codomain) 

  

def _apply_functor(self, x): 

""" 

Apply the functor to an object of ``self``'s domain. 

  

NOTE: 

  

Each subclass of :class:`Functor` should overload this method. By default, 

this method coerces into the codomain, without checking whether the 

argument belongs to the domain. 

  

TESTS:: 

  

sage: from sage.categories.functor import Functor 

sage: F = Functor(FiniteFields(),Fields()) 

sage: F._apply_functor(ZZ) 

Rational Field 

  

""" 

return self.__codomain(x) 

  

def _apply_functor_to_morphism(self, f): 

""" 

Apply the functor to a morphism between two objects of ``self``'s domain. 

  

NOTE: 

  

Each subclass of :class:`Functor` should overload this method. By 

default, this method coerces into the codomain, without checking 

whether the argument belongs to the domain. 

  

TESTS:: 

  

sage: from sage.categories.functor import Functor 

sage: F = Functor(Rings(),Fields()) 

sage: k.<a> = GF(25) 

sage: f = k.hom([-a-4]) 

sage: R.<t> = k[] 

sage: fR = R.hom(f,R) 

sage: fF = F(fR) # indirect doctest 

sage: fF 

Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Finite Field in a of size 5^2 

Defn: Induced from base ring by 

Ring endomorphism of Univariate Polynomial Ring in t over Finite Field in a of size 5^2 

Defn: Induced from base ring by 

Ring endomorphism of Finite Field in a of size 5^2 

Defn: a |--> 4*a + 1 

sage: fF((a^2+a)*t^2/(a*t - a^2)) 

3*a*t^2/((4*a + 1)*t + a + 1) 

  

""" 

try: 

return self(f.domain()).hom(f, self(f.codomain())) 

except Exception: 

raise TypeError('unable to transform %s into a morphism in %s' % (f,self.codomain())) 

  

def _coerce_into_domain(self, x): 

""" 

Interprete the argument as an object of self's domain. 

  

NOTE: 

  

A subclass of :class:`Functor` may overload this method. It should 

return an object of self's domain, and should raise a ``TypeError`` 

if this is impossible. 

  

By default, the argument will not be changed, but a ``TypeError`` 

will be raised if the argument does not belong to the domain. 

  

TESTS:: 

  

sage: from sage.categories.functor import Functor 

sage: F = Functor(Fields(),Fields()) 

sage: F(QQ) 

Rational Field 

sage: F(ZZ) # indirect doctest 

Traceback (most recent call last): 

... 

TypeError: x (=Integer Ring) is not in Category of fields 

  

""" 

if not (x in self.__domain): 

raise TypeError("x (=%s) is not in %s" % (x, self.__domain)) 

return x 

  

def _repr_(self): 

""" 

TESTS:: 

  

sage: from sage.categories.functor import Functor 

sage: F = Functor(Rings(),Fields()) 

sage: F #indirect doctest 

Functor from Category of rings to Category of fields 

  

A functor can be renamed if its type is a Python class 

(see :trac:`16156`):: 

  

sage: I = IdentityFunctor(Rings()); I 

The identity functor on Category of rings 

sage: I.rename('Id'); I 

Id 

  

""" 

return "Functor from %s to %s"%(self.__domain, self.__codomain) 

  

def __call__(self, x): 

""" 

NOTE: 

  

Implement _coerce_into_domain, _apply_functor and 

_apply_functor_to_morphism when subclassing Functor. 

  

TESTS: 

  

The default:: 

  

sage: from sage.categories.functor import Functor 

sage: F = Functor(Rings(),Fields()) 

sage: F 

Functor from Category of rings to Category of fields 

sage: F(ZZ) 

Rational Field 

sage: F(GF(2)) 

Finite Field of size 2 

  

Two subclasses:: 

  

sage: F1 = ForgetfulFunctor(FiniteFields(),Fields()) 

sage: F1(GF(5)) #indirect doctest 

Finite Field of size 5 

sage: F1(ZZ) 

Traceback (most recent call last): 

... 

TypeError: x (=Integer Ring) is not in Category of finite enumerated fields 

sage: F2 = IdentityFunctor(Fields()) 

sage: F2(RR) is RR #indirect doctest 

True 

sage: F2(ZZ['x','y']) 

Traceback (most recent call last): 

... 

TypeError: x (=Multivariate Polynomial Ring in x, y over Integer Ring) is not in Category of fields 

  

The last example shows that it is tested whether the result of 

applying the functor lies in the functor's codomain. Note that 

the matrix functor used to be defined similar to this example, 

which was fixed in :trac:`8807`:: 

  

sage: class IllFunctor(Functor): 

....: def __init__(self, m,n): 

....: self._m = m 

....: self._n = n 

....: Functor.__init__(self,Rings(),Rings()) 

....: def _apply_functor(self, R): 

....: return MatrixSpace(R,self._m,self._n) 

sage: F = IllFunctor(2,2) 

sage: F(QQ) 

Full MatrixSpace of 2 by 2 dense matrices over Rational Field 

sage: F = IllFunctor(2,3) 

sage: F(QQ) 

Traceback (most recent call last): 

... 

TypeError: Functor from Category of rings to Category of rings is ill-defined, since it sends x (=Rational Field) to something that is not in Category of rings. 

  

""" 

from sage.categories.morphism import is_Morphism 

if is_Morphism(x): 

return self._apply_functor_to_morphism(x) 

y = self._apply_functor(self._coerce_into_domain(x)) 

if not ((y in self.__codomain) or (y in self.__codomain.hom_category())): 

raise TypeError("%s is ill-defined, since it sends x (=%s) to something that is not in %s." % (repr(self), x, self.__codomain)) 

return y 

  

def domain(self): 

""" 

The domain of self 

  

EXAMPLES:: 

  

sage: F = ForgetfulFunctor(FiniteFields(),Fields()) 

sage: F.domain() 

Category of finite enumerated fields 

  

""" 

return self.__domain 

  

def codomain(self): 

""" 

The codomain of self 

  

EXAMPLES:: 

  

sage: F = ForgetfulFunctor(FiniteFields(),Fields()) 

sage: F.codomain() 

Category of fields 

  

""" 

return self.__codomain 

  

  

def is_Functor(x): 

""" 

Test whether the argument is a functor 

  

NOTE: 

  

There is a deprecation warning when using it from top level. 

Therefore we import it in our doc test. 

  

EXAMPLES:: 

  

sage: from sage.categories.functor import is_Functor 

sage: F1 = QQ.construction()[0] 

sage: F1 

FractionField 

sage: is_Functor(F1) 

True 

sage: is_Functor(FractionField) 

False 

sage: F2 = ForgetfulFunctor(Fields(), Rings()) 

sage: F2 

The forgetful functor from Category of fields to Category of rings 

sage: is_Functor(F2) 

True 

  

""" 

return isinstance(x, Functor) 

  

  

########################################### 

# The natural functors in Sage 

########################################### 

  

class ForgetfulFunctor_generic(Functor): 

""" 

The forgetful functor, i.e., embedding of a subcategory. 

  

NOTE: 

  

Forgetful functors should be created using :func:`ForgetfulFunctor`, 

since the init method of this class does not check whether the 

domain is a subcategory of the codomain. 

  

EXAMPLES:: 

  

sage: F = ForgetfulFunctor(FiniteFields(),Fields()) #indirect doctest 

sage: F 

The forgetful functor from Category of finite enumerated fields to Category of fields 

sage: F(GF(3)) 

Finite Field of size 3 

  

""" 

def __reduce__(self): 

""" 

EXAMPLES:: 

  

sage: F = ForgetfulFunctor(Groups(), Sets()) 

sage: loads(F.dumps()) == F 

True 

""" 

return ForgetfulFunctor, (self.domain(), self.codomain()) 

  

def _repr_(self): 

""" 

TESTS:: 

  

sage: F = ForgetfulFunctor(FiniteFields(),Fields()) 

sage: F #indirect doctest 

The forgetful functor from Category of finite enumerated fields to Category of fields 

  

""" 

return "The forgetful functor from %s to %s" % (self.domain(), 

self.codomain()) 

  

def __eq__(self, other): 

""" 

NOTE: 

  

It is tested whether the second argument belongs to the class 

of forgetful functors and has the same domain and codomain as 

self. If the second argument is a functor of a different class 

but happens to be a forgetful functor, both arguments will 

still be considered as being *different*. 

  

TESTS:: 

  

sage: F1 = ForgetfulFunctor(FiniteFields(),Fields()) 

  

This is to test against a bug occuring in a previous version 

(see :trac:`8800`):: 

  

sage: F1 == QQ #indirect doctest 

False 

  

We now compare with the fraction field functor, that has a 

different domain:: 

  

sage: F2 = QQ.construction()[0] 

sage: F1 == F2 #indirect doctest 

False 

""" 

from sage.categories.pushout import IdentityConstructionFunctor 

if not isinstance(other, (self.__class__, IdentityConstructionFunctor)): 

return False 

return (self.domain() == other.domain() and 

self.codomain() == other.codomain()) 

  

def __ne__(self, other): 

""" 

Return whether ``self`` is not equal to ``other``. 

  

EXAMPLES: 

  

sage: F1 = ForgetfulFunctor(FiniteFields(),Fields()) 

sage: F1 != F1 

False 

sage: F1 != QQ 

True 

""" 

return not self == other 

  

  

class IdentityFunctor_generic(ForgetfulFunctor_generic): 

""" 

Generic identity functor on any category 

  

NOTE: 

  

This usually is created using :func:`IdentityFunctor`. 

  

EXAMPLES:: 

  

sage: F = IdentityFunctor(Fields()) #indirect doctest 

sage: F 

The identity functor on Category of fields 

sage: F(RR) is RR 

True 

sage: F(ZZ) 

Traceback (most recent call last): 

... 

TypeError: x (=Integer Ring) is not in Category of fields 

  

TESTS:: 

  

sage: R = IdentityFunctor(Rings()) 

sage: P, _ = QQ['t'].construction() 

sage: R == P 

False 

sage: P == R 

False 

sage: R == QQ 

False 

""" 

def __init__(self, C): 

""" 

TESTS:: 

  

sage: from sage.categories.functor import IdentityFunctor_generic 

sage: F = IdentityFunctor_generic(Groups()) 

sage: F == IdentityFunctor(Groups()) 

True 

sage: F 

The identity functor on Category of groups 

  

""" 

ForgetfulFunctor_generic.__init__(self, C, C) 

  

def __reduce__(self): 

""" 

EXAMPLES:: 

  

sage: F = IdentityFunctor(Groups()) 

sage: loads(F.dumps()) == F 

True 

  

""" 

return IdentityFunctor, (self.domain(), ) 

  

def _repr_(self): 

""" 

TESTS:: 

  

sage: fields = Fields() 

sage: F = IdentityFunctor(fields) 

sage: F #indirect doctest 

The identity functor on Category of fields 

  

""" 

return "The identity functor on %s"%(self.domain()) 

  

def _apply_functor(self, x): 

""" 

Apply the functor to an object of ``self``'s domain. 

  

TESTS:: 

  

sage: fields = Fields() 

sage: F = IdentityFunctor(fields) 

sage: F._apply_functor(QQ) 

Rational Field 

  

It is not tested here whether the argument belongs to the domain 

(this test is done in the default method ``_coerce_into_domain``):: 

  

sage: F._apply_functor(ZZ) 

Integer Ring 

  

""" 

return x 

  

def IdentityFunctor(C): 

""" 

Construct the identity functor of the given category. 

  

INPUT: 

  

A category, ``C``. 

  

OUTPUT: 

  

The identity functor in ``C``. 

  

EXAMPLES:: 

  

sage: rings = Rings() 

sage: F = IdentityFunctor(rings) 

sage: F(ZZ['x','y']) is ZZ['x','y'] 

True 

  

""" 

return IdentityFunctor_generic(C) 

  

def ForgetfulFunctor(domain, codomain): 

""" 

Construct the forgetful function from one category to another. 

  

INPUT: 

  

``C``, ``D`` - two categories 

  

OUTPUT: 

  

A functor that returns the corresponding object of ``D`` for 

any element of ``C``, by forgetting the extra structure. 

  

ASSUMPTION: 

  

The category ``C`` must be a sub-category of ``D``. 

  

EXAMPLES:: 

  

sage: rings = Rings() 

sage: abgrps = CommutativeAdditiveGroups() 

sage: F = ForgetfulFunctor(rings, abgrps) 

sage: F 

The forgetful functor from Category of rings to Category of commutative additive groups 

  

It would be a mistake to call it in opposite order:: 

  

sage: F = ForgetfulFunctor(abgrps, rings) 

Traceback (most recent call last): 

... 

ValueError: Forgetful functor not supported for domain Category of commutative additive groups 

  

If both categories are equal, the forgetful functor is the same as the 

identity functor:: 

  

sage: ForgetfulFunctor(abgrps, abgrps) == IdentityFunctor(abgrps) 

True 

  

""" 

if domain == codomain: 

return IdentityFunctor(domain) 

if not domain.is_subcategory(codomain): 

raise ValueError("Forgetful functor not supported for domain %s" % domain) 

return ForgetfulFunctor_generic(domain, codomain)