Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

r""" 

Generalized Coxeter Groups 

""" 

#***************************************************************************** 

# Copyright (C) 2016 Travis Scrimshaw <tscrim at ucdavis.edu> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.misc.cachefunc import cached_method 

from sage.categories.category_singleton import Category_singleton 

from sage.categories.category_with_axiom import CategoryWithAxiom 

from sage.categories.complex_reflection_or_generalized_coxeter_groups import ComplexReflectionOrGeneralizedCoxeterGroups 

 

class GeneralizedCoxeterGroups(Category_singleton): 

r""" 

The category of generalized Coxeter groups. 

 

A generalized Coxeter group is a group with a presentation of 

the following form: 

 

.. MATH:: 

 

\langle s_i \mid s_i^{p_i}, s_i s_j \cdots = s_j s_i \cdots \rangle, 

 

where `p_i > 1`, `i \in I`, and the factors in the braid relation 

occur `m_{ij} = m_{ji}` times for all `i \neq j \in I`. 

 

EXAMPLES:: 

 

sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups 

sage: C = GeneralizedCoxeterGroups(); C 

Category of generalized coxeter groups 

 

TESTS:: 

 

sage: TestSuite(C).run() 

""" 

@cached_method 

def super_categories(self): 

""" 

EXAMPLES:: 

 

sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups 

sage: GeneralizedCoxeterGroups().super_categories() 

[Category of complex reflection or generalized coxeter groups] 

""" 

return [ComplexReflectionOrGeneralizedCoxeterGroups()] 

 

def additional_structure(self): 

r""" 

Return ``None``. 

 

Indeed, all the structure generalized Coxeter groups have in 

addition to groups (simple reflections, ...) is already 

defined in the super category. 

 

.. SEEALSO:: :meth:`Category.additional_structure` 

 

EXAMPLES:: 

 

sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups 

sage: GeneralizedCoxeterGroups().additional_structure() 

""" 

return None 

 

 

class Finite(CategoryWithAxiom): 

""" 

The category of finite generalized Coxeter groups. 

""" 

def extra_super_categories(self): 

""" 

Implement that a finite generalized Coxeter group is a 

well-generated complex reflection group. 

 

EXAMPLES:: 

 

sage: from sage.categories.generalized_coxeter_groups import GeneralizedCoxeterGroups 

sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups 

 

sage: Cat = GeneralizedCoxeterGroups().Finite() 

sage: Cat.extra_super_categories() 

[Category of well generated finite complex reflection groups] 

sage: Cat.is_subcategory(ComplexReflectionGroups().Finite().WellGenerated()) 

True 

""" 

from sage.categories.complex_reflection_groups import ComplexReflectionGroups 

return [ComplexReflectionGroups().Finite().WellGenerated()]