Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

r""" 

Highest Weight Crystals 

""" 

#***************************************************************************** 

# Copyright (C) 2010 Anne Schilling <anne at math.ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# http://www.gnu.org/licenses/ 

#****************************************************************************** 

 

from sage.misc.cachefunc import cached_method 

from sage.categories.category_singleton import Category_singleton 

from sage.categories.crystals import (Crystals, CrystalHomset, 

CrystalMorphismByGenerators) 

from sage.categories.tensor import TensorProductsCategory 

from sage.graphs.dot2tex_utils import have_dot2tex 

 

class HighestWeightCrystals(Category_singleton): 

""" 

The category of highest weight crystals. 

 

A crystal is highest weight if it is acyclic; in particular, every 

connected component has a unique highest weight element, and that 

element generate the component. 

 

EXAMPLES:: 

 

sage: C = HighestWeightCrystals() 

sage: C 

Category of highest weight crystals 

sage: C.super_categories() 

[Category of crystals] 

sage: C.example() 

Highest weight crystal of type A_3 of highest weight omega_1 

 

TESTS:: 

 

sage: TestSuite(C).run() 

sage: B = HighestWeightCrystals().example() 

sage: TestSuite(B).run(verbose = True) 

running ._test_an_element() . . . pass 

running ._test_cardinality() . . . pass 

running ._test_category() . . . pass 

running ._test_elements() . . . 

Running the test suite of self.an_element() 

running ._test_category() . . . pass 

running ._test_eq() . . . pass 

running ._test_new() . . . pass 

running ._test_not_implemented_methods() . . . pass 

running ._test_pickling() . . . pass 

running ._test_stembridge_local_axioms() . . . pass 

pass 

running ._test_elements_eq_reflexive() . . . pass 

running ._test_elements_eq_symmetric() . . . pass 

running ._test_elements_eq_transitive() . . . pass 

running ._test_elements_neq() . . . pass 

running ._test_enumerated_set_contains() . . . pass 

running ._test_enumerated_set_iter_cardinality() . . . pass 

running ._test_enumerated_set_iter_list() . . . pass 

running ._test_eq() . . . pass 

running ._test_fast_iter() . . . pass 

running ._test_new() . . . pass 

running ._test_not_implemented_methods() . . . pass 

running ._test_pickling() . . . pass 

running ._test_some_elements() . . . pass 

running ._test_stembridge_local_axioms() . . . pass 

""" 

 

def super_categories(self): 

r""" 

EXAMPLES:: 

 

sage: HighestWeightCrystals().super_categories() 

[Category of crystals] 

""" 

return [Crystals()] 

 

def example(self): 

""" 

Returns an example of highest weight crystals, as per 

:meth:`Category.example`. 

 

EXAMPLES:: 

 

sage: B = HighestWeightCrystals().example(); B 

Highest weight crystal of type A_3 of highest weight omega_1 

""" 

from sage.categories.crystals import Crystals 

return Crystals().example() 

 

def additional_structure(self): 

r""" 

Return ``None``. 

 

Indeed, the category of highest weight crystals defines no 

additional structure: it only guarantees the existence of a 

unique highest weight element in each component. 

 

.. SEEALSO:: :meth:`Category.additional_structure` 

 

.. TODO:: Should this category be a :class:`CategoryWithAxiom`? 

 

EXAMPLES:: 

 

sage: HighestWeightCrystals().additional_structure() 

""" 

return None 

 

class ParentMethods: 

 

@cached_method 

def highest_weight_vectors(self): 

r""" 

Returns the highest weight vectors of ``self`` 

 

This default implementation selects among the module 

generators those that are highest weight, and caches the result. 

A crystal element `b` is highest weight if `e_i(b)=0` for all `i` in the 

index set. 

 

 

EXAMPLES:: 

 

sage: C = crystals.Letters(['A',5]) 

sage: C.highest_weight_vectors() 

(1,) 

 

:: 

 

sage: C = crystals.Letters(['A',2]) 

sage: T = crystals.TensorProduct(C,C,C,generators=[[C(2),C(1),C(1)],[C(1),C(2),C(1)]]) 

sage: T.highest_weight_vectors() 

([2, 1, 1], [1, 2, 1]) 

""" 

return tuple(g for g in self.module_generators if g.is_highest_weight()) 

 

def highest_weight_vector(self): 

r""" 

Returns the highest weight vector if there is a single one; 

otherwise, raises an error. 

 

Caveat: this assumes that :meth:`.highest_weight_vectors` 

returns a list or tuple. 

 

EXAMPLES:: 

 

sage: C = crystals.Letters(['A',5]) 

sage: C.highest_weight_vector() 

1 

""" 

hw = self.highest_weight_vectors(); 

if len(hw) == 1: 

return hw[0] 

else: 

raise RuntimeError("The crystal does not have exactly one highest weight vector") 

 

# TODO: Not every highest weight crystal is a lowest weight crystal 

@cached_method 

def lowest_weight_vectors(self): 

r""" 

Return the lowest weight vectors of ``self``. 

 

This default implementation selects among all elements of the crystal 

those that are lowest weight, and cache the result. 

A crystal element `b` is lowest weight if `f_i(b)=0` for all `i` in the 

index set. 

 

EXAMPLES:: 

 

sage: C = crystals.Letters(['A',5]) 

sage: C.lowest_weight_vectors() 

(6,) 

 

:: 

 

sage: C = crystals.Letters(['A',2]) 

sage: T = crystals.TensorProduct(C,C,C,generators=[[C(2),C(1),C(1)],[C(1),C(2),C(1)]]) 

sage: T.lowest_weight_vectors() 

([3, 2, 3], [3, 3, 2]) 

""" 

return tuple(g for g in self if g.is_lowest_weight()) 

 

def __iter__(self, index_set=None, max_depth = float("inf")): 

""" 

Returns the iterator of ``self``. 

 

INPUT: 

 

- ``index_set`` -- (Default: ``None``) The index set; if ``None`` 

then use the index set of the crystal 

 

- ``max_depth`` -- (Default: infinity) The maximum depth to build 

 

EXAMPLES:: 

 

sage: C = crystals.LSPaths(['A',2,1],[0,1,0]) 

sage: sorted([p for p in C.__iter__(max_depth=3)], key=str) 

[(-Lambda[0] + 2*Lambda[2] - delta,), 

(-Lambda[0] + Lambda[1] + 1/2*Lambda[2] - delta, Lambda[0] - 1/2*Lambda[2]), 

(1/2*Lambda[0] + Lambda[1] - Lambda[2] - 1/2*delta, -1/2*Lambda[0] + Lambda[2] - 1/2*delta), 

(2*Lambda[0] - Lambda[2],), 

(Lambda[0] - Lambda[1] + Lambda[2],), 

(Lambda[1],)] 

sage: [p for p in C.__iter__(index_set=[0, 1], max_depth=3)] 

[(Lambda[1],), (Lambda[0] - Lambda[1] + Lambda[2],), (-Lambda[0] + 2*Lambda[2] - delta,)] 

""" 

if index_set is None: 

index_set = self.index_set() 

from sage.sets.recursively_enumerated_set import RecursivelyEnumeratedSet 

return RecursivelyEnumeratedSet(self.module_generators, 

lambda x: [x.f(i) for i in index_set], 

structure='graded', 

max_depth=max_depth).breadth_first_search_iterator() 

 

@cached_method 

def q_dimension(self, q=None, prec=None, use_product=False): 

r""" 

Return the `q`-dimension of ``self``. 

 

Let `B(\lambda)` denote a highest weight crystal. Recall that 

the degree of the `\mu`-weight space of `B(\lambda)` (under 

the principal gradation) is equal to 

`\langle \rho^{\vee}, \lambda - \mu \rangle` where 

`\langle \rho^{\vee}, \alpha_i \rangle = 1` for all `i \in I` 

(in particular, take `\rho^{\vee} = \sum_{i \in I} h_i`). 

 

The `q`-dimension of a highest weight crystal `B(\lambda)` is 

defined as 

 

.. MATH:: 

 

\dim_q B(\lambda) := \sum_{j \geq 0} \dim(B_j) q^j, 

 

where `B_j` denotes the degree `j` portion of `B(\lambda)`. This 

can be expressed as the product 

 

.. MATH:: 

 

\dim_q B(\lambda) = \prod_{\alpha^{\vee} \in \Delta_+^{\vee}} 

\left( \frac{1 - q^{\langle \lambda + \rho, \alpha^{\vee} 

\rangle}}{1 - q^{\langle \rho, \alpha^{\vee} \rangle}} 

\right)^{\mathrm{mult}\, \alpha}, 

 

where `\Delta_+^{\vee}` denotes the set of positive coroots. 

Taking the limit as `q \to 1` gives the dimension of `B(\lambda)`. 

For more information, see [Ka1990]_ Section 10.10. 

 

INPUT: 

 

- ``q`` -- the (generic) parameter `q` 

 

- ``prec`` -- (default: ``None``) The precision of the power 

series ring to use if the crystal is not known to be finite 

(i.e. the number of terms returned). 

If ``None``, then the result is returned as a lazy power series. 

 

- ``use_product`` -- (default: ``False``) if we have a finite 

crystal and ``True``, use the product formula 

 

EXAMPLES:: 

 

sage: C = crystals.Tableaux(['A',2], shape=[2,1]) 

sage: qdim = C.q_dimension(); qdim 

q^4 + 2*q^3 + 2*q^2 + 2*q + 1 

sage: qdim(1) 

8 

sage: len(C) == qdim(1) 

True 

sage: C.q_dimension(use_product=True) == qdim 

True 

sage: C.q_dimension(prec=20) 

q^4 + 2*q^3 + 2*q^2 + 2*q + 1 

sage: C.q_dimension(prec=2) 

2*q + 1 

 

sage: R.<t> = QQ[] 

sage: C.q_dimension(q=t^2) 

t^8 + 2*t^6 + 2*t^4 + 2*t^2 + 1 

 

sage: C = crystals.Tableaux(['A',2], shape=[5,2]) 

sage: C.q_dimension() 

q^10 + 2*q^9 + 4*q^8 + 5*q^7 + 6*q^6 + 6*q^5 

+ 6*q^4 + 5*q^3 + 4*q^2 + 2*q + 1 

 

sage: C = crystals.Tableaux(['B',2], shape=[2,1]) 

sage: qdim = C.q_dimension(); qdim 

q^10 + 2*q^9 + 3*q^8 + 4*q^7 + 5*q^6 + 5*q^5 

+ 5*q^4 + 4*q^3 + 3*q^2 + 2*q + 1 

sage: qdim == C.q_dimension(use_product=True) 

True 

 

sage: C = crystals.Tableaux(['D',4], shape=[2,1]) 

sage: C.q_dimension() 

q^16 + 2*q^15 + 4*q^14 + 7*q^13 + 10*q^12 + 13*q^11 

+ 16*q^10 + 18*q^9 + 18*q^8 + 18*q^7 + 16*q^6 + 13*q^5 

+ 10*q^4 + 7*q^3 + 4*q^2 + 2*q + 1 

 

We check with a finite tensor product:: 

 

sage: TP = crystals.TensorProduct(C, C) 

sage: TP.cardinality() 

25600 

sage: qdim = TP.q_dimension(use_product=True); qdim # long time 

q^32 + 2*q^31 + 8*q^30 + 15*q^29 + 34*q^28 + 63*q^27 + 110*q^26 

+ 175*q^25 + 276*q^24 + 389*q^23 + 550*q^22 + 725*q^21 

+ 930*q^20 + 1131*q^19 + 1362*q^18 + 1548*q^17 + 1736*q^16 

+ 1858*q^15 + 1947*q^14 + 1944*q^13 + 1918*q^12 + 1777*q^11 

+ 1628*q^10 + 1407*q^9 + 1186*q^8 + 928*q^7 + 720*q^6 

+ 498*q^5 + 342*q^4 + 201*q^3 + 117*q^2 + 48*q + 26 

sage: qdim(1) # long time 

25600 

sage: TP.q_dimension() == qdim # long time 

True 

 

The `q`-dimensions of infinite crystals are returned 

as formal power series:: 

 

sage: C = crystals.LSPaths(['A',2,1], [1,0,0]) 

sage: C.q_dimension(prec=5) 

1 + q + 2*q^2 + 2*q^3 + 4*q^4 + O(q^5) 

sage: C.q_dimension(prec=10) 

1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6 

+ 9*q^7 + 13*q^8 + 16*q^9 + O(q^10) 

sage: qdim = C.q_dimension(); qdim 

1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6 

+ 9*q^7 + 13*q^8 + 16*q^9 + 22*q^10 + O(x^11) 

sage: qdim.compute_coefficients(15) 

sage: qdim 

1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 7*q^6 

+ 9*q^7 + 13*q^8 + 16*q^9 + 22*q^10 + 27*q^11 

+ 36*q^12 + 44*q^13 + 57*q^14 + 70*q^15 + O(x^16) 

 

""" 

from sage.rings.all import ZZ 

WLR = self.weight_lattice_realization() 

I = self.index_set() 

mg = self.highest_weight_vectors() 

max_deg = float('inf') if prec is None else prec - 1 

 

def iter_by_deg(gens): 

next = set(gens) 

deg = -1 

while next and deg < max_deg: 

deg += 1 

yield len(next) 

todo = next 

next = set([]) 

while todo: 

x = todo.pop() 

for i in I: 

y = x.f(i) 

if y is not None: 

next.add(y) 

# def iter_by_deg 

 

from sage.categories.finite_crystals import FiniteCrystals 

if self in FiniteCrystals(): 

if q is None: 

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing 

q = PolynomialRing(ZZ, 'q').gen(0) 

 

if use_product: 

# Since we are in the classical case, all roots occur with multiplicity 1 

pos_coroots = [x.associated_coroot() for x in WLR.positive_roots()] 

rho = WLR.rho() 

P = q.parent() 

ret = P.zero() 

for v in self.highest_weight_vectors(): 

hw = v.weight() 

ret += P.prod((1 - q**(rho+hw).scalar(ac)) / (1 - q**rho.scalar(ac)) 

for ac in pos_coroots) 

# We do a cast since the result would otherwise live in the fraction field 

return P(ret) 

 

elif prec is None: 

# If we're here, we may not be a finite crystal. 

# In fact, we're probably infinite. 

from sage.combinat.species.series import LazyPowerSeriesRing 

if q is None: 

P = LazyPowerSeriesRing(ZZ, names='q') 

else: 

P = q.parent() 

if not isinstance(P, LazyPowerSeriesRing): 

raise TypeError("the parent of q must be a lazy power series ring") 

ret = P(iter_by_deg(mg)) 

ret.compute_coefficients(10) 

return ret 

 

from sage.rings.power_series_ring import PowerSeriesRing, PowerSeriesRing_generic 

if q is None: 

q = PowerSeriesRing(ZZ, 'q', default_prec=prec).gen(0) 

P = q.parent() 

ret = P.sum(c * q**deg for deg,c in enumerate(iter_by_deg(mg))) 

if ret.degree() == max_deg and isinstance(P, PowerSeriesRing_generic): 

ret = P(ret, prec) 

return ret 

 

# TODO: This is not correct if a factor has multiple heads (i.e., we 

# should have a category for uniqueness of highest/lowest weights) 

connected_components_generators = highest_weight_vectors 

 

def _Hom_(self, Y, category=None, **options): 

r""" 

Return the homset from ``self`` to ``Y`` in the 

category ``category``. 

 

INPUT: 

 

- ``Y`` -- a crystal 

- ``category`` -- a subcategory of :class:`HighestWeightCrysals`() 

or ``None`` 

 

The sole purpose of this method is to construct the homset as a 

:class:`~sage.categories.highest_weight_crystals.HighestWeightCrystalHomset`. 

If ``category`` is specified and is not a subcategory of 

:class:`HighestWeightCrystals`, a ``TypeError`` is raised instead 

 

This method is not meant to be called directly. Please use 

:func:`sage.categories.homset.Hom` instead. 

 

EXAMPLES:: 

 

sage: B = crystals.Tableaux(['A',2], shape=[2,1]) 

sage: H = B._Hom_(B) 

sage: H 

Set of Crystal Morphisms from The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]] 

to The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]] 

sage: type(H) 

<class 'sage.categories.highest_weight_crystals.HighestWeightCrystalHomset_with_category'> 

 

TESTS: 

 

Check that we fallback first to trying a crystal homset 

(:trac:`19458`):: 

 

sage: Binf = crystals.infinity.Tableaux(['A',2]) 

sage: Bi = crystals.elementary.Elementary(Binf.cartan_type(), 1) 

sage: tens = Bi.tensor(Binf) 

sage: Hom(Binf, tens) 

Set of Crystal Morphisms from ... 

""" 

if category is None: 

category = self.category() 

elif not category.is_subcategory(Crystals()): 

raise TypeError("{} is not a subcategory of Crystals()".format(category)) 

if Y not in Crystals(): 

raise TypeError("{} is not a crystal".format(Y)) 

return HighestWeightCrystalHomset(self, Y, category=category, **options) 

 

def digraph(self, subset=None, index_set=None, depth=None): 

""" 

Return the DiGraph associated to ``self``. 

 

INPUT: 

 

- ``subset`` -- (optional) a subset of vertices for 

which the digraph should be constructed 

 

- ``index_set`` -- (optional) the index set to draw arrows 

 

- ``depth`` -- the depth to draw; optional only for finite crystals 

 

EXAMPLES:: 

 

sage: T = crystals.Tableaux(['A',2], shape=[2,1]) 

sage: T.digraph() 

Digraph on 8 vertices 

sage: S = T.subcrystal(max_depth=2) 

sage: len(S) 

5 

sage: G = T.digraph(subset=list(S)) 

sage: G.is_isomorphic(T.digraph(depth=2), edge_labels=True) 

True 

 

TESTS: 

 

The following example demonstrates the speed improvement. 

The speedup in non-affine types is small however:: 

 

sage: depth = 5 

sage: C = crystals.AlcovePaths(['A',2,1], [1,1,0]) 

sage: general_digraph = Crystals().parent_class.digraph 

sage: S = C.subcrystal(max_depth=depth, direction='lower') 

sage: %timeit C.digraph(depth=depth) # not tested 

10 loops, best of 3: 48.9 ms per loop 

sage: %timeit general_digraph(C, subset=S) # not tested 

10 loops, best of 3: 96.5 ms per loop 

sage: G1 = C.digraph(depth=depth) 

sage: G2 = general_digraph(C, subset=S) 

sage: G1.is_isomorphic(G2, edge_labels=True) 

True 

""" 

if subset is not None: 

return Crystals().parent_class.digraph(self, subset, index_set) 

 

if self not in Crystals().Finite() and depth is None: 

raise NotImplementedError("crystals not known to be finite must" 

" specify either the subset or depth") 

 

from sage.graphs.all import DiGraph 

if index_set is None: 

index_set = self.index_set() 

 

rank = 0 

d = {g: {} for g in self.module_generators} 

visited = set(d.keys()) 

 

while depth is None or rank < depth: 

recently_visited = set() 

for x in visited: 

d.setdefault(x, {}) # does nothing if there's a default 

for i in index_set: 

xfi = x.f(i) 

if xfi is not None: 

d[x][xfi] = i 

recently_visited.add(xfi) 

if not recently_visited: # No new nodes, nothing more to do 

break 

rank += 1 

visited = recently_visited 

 

G = DiGraph(d) 

if have_dot2tex(): 

G.set_latex_options(format="dot2tex", 

edge_labels=True, 

color_by_label=self.cartan_type()._index_set_coloring) 

return G 

 

class ElementMethods: 

def string_parameters(self, word=None): 

r""" 

Return the string parameters of ``self`` corresponding to the 

reduced word ``word``. 

 

Given a reduced expression `w = s_{i_1} \cdots s_{i_k}`, 

the string parameters of `b \in B` corresponding to `w` 

are `(a_1, \ldots, a_k)` such that 

 

.. MATH:: 

 

\begin{aligned} 

e_{i_m}^{a_m} \cdots e_{i_1}^{a_1} b & \neq 0 \\ 

e_{i_m}^{a_m+1} \cdots e_{i_1}^{a_1} b & = 0 

\end{aligned} 

 

for all `1 \leq m \leq k`. 

 

For connected components isomorphic to `B(\lambda)` or 

`B(\infty)`, if `w = w_0` is the longest element of the 

Weyl group, then the path determined by the string 

parametrization terminates at the highest weight vector. 

 

INPUT: 

 

- ``word`` -- a word in the alphabet of the index set; if not 

specified and we are in finite type, then this will be some 

reduced expression for the long element determined by the 

Weyl group 

 

EXAMPLES:: 

 

sage: B = crystals.infinity.NakajimaMonomials(['A',3]) 

sage: mg = B.highest_weight_vector() 

sage: w0 = [1,2,1,3,2,1] 

sage: mg.string_parameters(w0) 

[0, 0, 0, 0, 0, 0] 

sage: mg.f_string([1]).string_parameters(w0) 

[1, 0, 0, 0, 0, 0] 

sage: mg.f_string([1,1,1]).string_parameters(w0) 

[3, 0, 0, 0, 0, 0] 

sage: mg.f_string([1,1,1,2,2]).string_parameters(w0) 

[1, 2, 2, 0, 0, 0] 

sage: mg.f_string([1,1,1,2,2]) == mg.f_string([1,1,2,2,1]) 

True 

sage: x = mg.f_string([1,1,1,2,2,1,3,3,2,1,1,1]) 

sage: x.string_parameters(w0) 

[4, 1, 1, 2, 2, 2] 

sage: x.string_parameters([3,2,1,3,2,3]) 

[2, 3, 7, 0, 0, 0] 

sage: x == mg.f_string([1]*7 + [2]*3 + [3]*2) 

True 

 

:: 

 

sage: B = crystals.infinity.Tableaux("A5") 

sage: b = B(rows=[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,6,6,6,6,6,6], 

....: [2,2,2,2,2,2,2,2,2,4,5,5,5,6], 

....: [3,3,3,3,3,3,3,5], 

....: [4,4,4,6,6,6], 

....: [5,6]]) 

sage: b.string_parameters([1,2,1,3,2,1,4,3,2,1,5,4,3,2,1]) 

[0, 1, 1, 1, 1, 0, 4, 4, 3, 0, 11, 10, 7, 7, 6] 

 

sage: B = crystals.infinity.Tableaux("G2") 

sage: b = B(rows=[[1,1,1,1,1,3,3,0,-3,-3,-2,-2,-1,-1,-1,-1],[2,3,3,3]]) 

sage: b.string_parameters([2,1,2,1,2,1]) 

[5, 13, 11, 15, 4, 4] 

sage: b.string_parameters([1,2,1,2,1,2]) 

[7, 12, 15, 8, 10, 0] 

 

:: 

 

sage: C = crystals.Tableaux(['C',2], shape=[2,1]) 

sage: mg = C.highest_weight_vector() 

sage: lw = C.lowest_weight_vectors()[0] 

sage: lw.string_parameters([1,2,1,2]) 

[1, 2, 3, 1] 

sage: lw.string_parameters([2,1,2,1]) 

[1, 3, 2, 1] 

sage: lw.e_string([2,1,1,1,2,2,1]) == mg 

True 

sage: lw.e_string([1,2,2,1,1,1,2]) == mg 

True 

 

TESTS:: 

 

sage: B = crystals.infinity.NakajimaMonomials(['B',3]) 

sage: mg = B.highest_weight_vector() 

sage: mg.string_parameters() 

[0, 0, 0, 0, 0, 0, 0, 0, 0] 

sage: w0 = WeylGroup(['B',3]).long_element().reduced_word() 

sage: def f_word(params): 

....: return reversed([index for i, index in enumerate(w0) 

....: for _ in range(params[i])]) 

sage: all(mg.f_string( f_word(x.value.string_parameters(w0)) ) == x.value 

....: for x in B.subcrystal(max_depth=4)) 

True 

 

sage: B = crystals.infinity.NakajimaMonomials(['A',2,1]) 

sage: mg = B.highest_weight_vector() 

sage: mg.string_parameters() 

Traceback (most recent call last): 

... 

ValueError: the word must be specified because the 

Weyl group is not finite 

""" 

if word is None: 

if not self.cartan_type().is_finite(): 

raise ValueError("the word must be specified because" 

" the Weyl group is not finite") 

from sage.combinat.root_system.weyl_group import WeylGroup 

word = WeylGroup(self.cartan_type()).long_element().reduced_word() 

x = self 

params = [] 

for i in word: 

count = 0 

y = x.e(i) 

while y is not None: 

x = y 

y = x.e(i) 

count += 1 

params.append(count) 

return params 

 

class TensorProducts(TensorProductsCategory): 

""" 

The category of highest weight crystals constructed by tensor 

product of highest weight crystals. 

""" 

@cached_method 

def extra_super_categories(self): 

""" 

EXAMPLES:: 

 

sage: HighestWeightCrystals().TensorProducts().extra_super_categories() 

[Category of highest weight crystals] 

""" 

return [self.base_category()] 

 

class ParentMethods: 

""" 

Implements operations on tensor products of crystals. 

""" 

@cached_method 

def highest_weight_vectors(self): 

r""" 

Return the highest weight vectors of ``self``. 

 

This works by using a backtracing algorithm since if 

`b_2 \otimes b_1` is highest weight then `b_1` is 

highest weight. 

 

EXAMPLES:: 

 

sage: C = crystals.Tableaux(['D',4], shape=[2,2]) 

sage: D = crystals.Tableaux(['D',4], shape=[1]) 

sage: T = crystals.TensorProduct(D, C) 

sage: T.highest_weight_vectors() 

([[[1]], [[1, 1], [2, 2]]], 

[[[3]], [[1, 1], [2, 2]]], 

[[[-2]], [[1, 1], [2, 2]]]) 

sage: L = filter(lambda x: x.is_highest_weight(), T) 

sage: tuple(L) == T.highest_weight_vectors() 

True 

 

TESTS: 

 

We check this works with Kashiwara's convention for 

tensor products:: 

 

sage: C = crystals.Tableaux(['B',3], shape=[2,2]) 

sage: D = crystals.Tableaux(['B',3], shape=[1]) 

sage: T = crystals.TensorProduct(D, C) 

sage: T.options(convention='Kashiwara') 

sage: T.highest_weight_vectors() 

([[[1, 1], [2, 2]], [[1]]], 

[[[1, 1], [2, 2]], [[3]]], 

[[[1, 1], [2, 2]], [[-2]]]) 

sage: T.options._reset() 

sage: T.highest_weight_vectors() 

([[[1]], [[1, 1], [2, 2]]], 

[[[3]], [[1, 1], [2, 2]]], 

[[[-2]], [[1, 1], [2, 2]]]) 

""" 

n = len(self.crystals) 

it = [ iter(self.crystals[-1].highest_weight_vectors()) ] 

path = [] 

ret = [] 

while it: 

try: 

x = next(it[-1]) 

except StopIteration: 

it.pop() 

if path: 

path.pop(0) 

continue 

 

b = self.element_class(self, [x] + path) 

if not b.is_highest_weight(): 

continue 

path.insert(0, x) 

if len(path) == n: 

ret.append(b) 

path.pop(0) 

else: 

it.append( iter(self.crystals[-len(path)-1]) ) 

return tuple(ret) 

 

############################################################################### 

## Morphisms 

 

class HighestWeightCrystalMorphism(CrystalMorphismByGenerators): 

r""" 

A virtual crystal morphism whose domain is a highest weight crystal. 

 

INPUT: 

 

- ``parent`` -- a homset 

- ``on_gens`` -- a function or list that determines the image of the 

generators (if given a list, then this uses the order of the 

generators of the domain) of the domain under ``self`` 

- ``cartan_type`` -- (optional) a Cartan type; the default is the 

Cartan type of the domain 

- ``virtualization`` -- (optional) a dictionary whose keys are 

in the index set of the domain and whose values are lists of 

entries in the index set of the codomain 

- ``scaling_factors`` -- (optional) a dictionary whose keys are in 

the index set of the domain and whose values are scaling factors 

for the weight, `\varepsilon` and `\varphi` 

- ``gens`` -- (optional) a list of generators to define the morphism; 

the default is to use the highest weight vectors of the crystal 

- ``check`` -- (default: ``True``) check if the crystal morphism is valid 

""" 

def __init__(self, parent, on_gens, cartan_type=None, 

virtualization=None, scaling_factors=None, 

gens=None, check=True): 

""" 

Construct a crystal morphism. 

 

TESTS:: 

 

sage: B = crystals.infinity.Tableaux(['B',2]) 

sage: C = crystals.infinity.NakajimaMonomials(['B',2]) 

sage: psi = B.crystal_morphism(C.module_generators) 

 

sage: B = crystals.Tableaux(['B',3], shape=[1]) 

sage: C = crystals.Tableaux(['D',4], shape=[2]) 

sage: H = Hom(B, C) 

sage: psi = H(C.module_generators) 

""" 

if cartan_type is None: 

cartan_type = parent.domain().cartan_type() 

if isinstance(on_gens, dict): 

gens = on_gens.keys() 

I = cartan_type.index_set() 

if gens is None: 

if cartan_type == parent.domain().cartan_type(): 

gens = parent.domain().highest_weight_vectors() 

else: 

gens = tuple(x for x in parent.domain() if x.is_highest_weight(I)) 

self._hw_gens = True 

elif check: 

self._hw_gens = all(x.is_highest_weight(I) for x in gens) 

else: 

self._hw_gens = False 

CrystalMorphismByGenerators.__init__(self, parent, on_gens, cartan_type, 

virtualization, scaling_factors, 

gens, check) 

 

def _call_(self, x): 

""" 

Return the image of ``x`` under ``self``. 

 

TESTS:: 

 

sage: B = crystals.infinity.Tableaux(['B',2]) 

sage: C = crystals.infinity.NakajimaMonomials(['B',2]) 

sage: psi = B.crystal_morphism(C.module_generators) 

sage: b = B.highest_weight_vector() 

sage: psi(b) 

1 

sage: c = psi(b.f_string([1,1,1,2,2,1,2,2])); c 

Y(1,0)^-4 Y(2,0)^4 Y(2,1)^-4  

sage: c == C.highest_weight_vector().f_string([1,1,1,2,2,1,2,2]) 

True 

 

sage: B = crystals.Tableaux(['B',3], shape=[1]) 

sage: C = crystals.Tableaux(['D',4], shape=[2]) 

sage: H = Hom(B, C) 

sage: psi = H(C.module_generators) 

sage: psi(B.module_generators[0]) 

[[1, 1]] 

 

We check with the morphism defined on the lowest weight vector:: 

 

sage: B = crystals.Tableaux(['A',2], shape=[1]) 

sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights() 

sage: T = crystals.elementary.T(['A',2], La[2]) 

sage: Bp = T.tensor(B) 

sage: C = crystals.Tableaux(['A',2], shape=[2,1]) 

sage: H = Hom(Bp, C) 

sage: x = C.module_generators[0].f_string([1,2]) 

sage: psi = H({Bp.lowest_weight_vectors()[0]: x}) 

sage: psi 

['A', 2] Crystal morphism: 

From: Full tensor product of the crystals 

[The T crystal of type ['A', 2] and weight Lambda[2], 

The crystal of tableaux of type ['A', 2] and shape(s) [[1]]] 

To: The crystal of tableaux of type ['A', 2] and shape(s) [[2, 1]] 

Defn: [Lambda[2], [[3]]] |--> [[1, 3], [2]] 

sage: psi(Bp.highest_weight_vector()) 

[[1, 1], [2]] 

""" 

if not self._hw_gens: 

return CrystalMorphismByGenerators._call_(self, x) 

mg, path = x.to_highest_weight(self._cartan_type.index_set()) 

cur = self._on_gens(mg) 

for i in reversed(path): 

if cur is None: 

return None 

s = [] 

sf = self._scaling_factors[i] 

for j in self._virtualization[i]: 

s += [j]*sf 

cur = cur.f_string(s) 

return cur 

 

class HighestWeightCrystalHomset(CrystalHomset): 

""" 

The set of crystal morphisms from a highest weight crystal to 

another crystal. 

 

.. SEEALSO:: 

 

See :class:`sage.categories.crystals.CrystalHomset` for more 

information. 

""" 

def __init__(self, X, Y, category=None): 

""" 

Initialize ``self``. 

 

TESTS:: 

 

sage: B = crystals.Tableaux(['A', 2], shape=[2,1]) 

sage: H = Hom(B, B) 

sage: B = crystals.infinity.Tableaux(['B',2]) 

sage: H = Hom(B, B) 

""" 

if category is None: 

category = HighestWeightCrystals() 

CrystalHomset.__init__(self, X, Y, category) 

 

Element = HighestWeightCrystalMorphism