Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

r""" 

Modules 

""" 

from __future__ import absolute_import 

#***************************************************************************** 

# Copyright (C) 2005 David Kohel <kohel@maths.usyd.edu> 

# William Stein <wstein@math.ucsd.edu> 

# 2008 Teresa Gomez-Diaz (CNRS) <Teresa.Gomez-Diaz@univ-mlv.fr> 

# 2008-2011 Nicolas M. Thiery <nthiery at users.sf.net> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# http://www.gnu.org/licenses/ 

#****************************************************************************** 

 

from sage.misc.cachefunc import cached_method 

from sage.misc.lazy_import import LazyImport 

from sage.categories.category_with_axiom import CategoryWithAxiom_over_base_ring 

from sage.categories.homsets import HomsetsCategory 

from .category import Category, JoinCategory 

from .category_types import Category_module, Category_over_base_ring 

from sage.categories.tensor import TensorProductsCategory, tensor 

from .dual import DualObjectsCategory 

from sage.categories.cartesian_product import CartesianProductsCategory 

from sage.categories.sets_cat import Sets 

from sage.categories.bimodules import Bimodules 

from sage.categories.fields import Fields 

_Fields = Fields() 

 

class Modules(Category_module): 

r""" 

The category of all modules over a base ring `R`. 

 

An `R`-module `M` is a left and right `R`-module over a 

commutative ring `R` such that: 

 

.. MATH:: 

 

r*(x*s) = (r*x)*s \qquad \forall r,s \in R \text{ and } x \in M 

 

INPUT: 

 

- ``base_ring`` -- a ring `R` or subcategory of ``Rings()`` 

- ``dispatch`` -- a boolean (for internal use; default: ``True``) 

 

When the base ring is a field, the category of vector spaces is 

returned instead (unless ``dispatch == False``). 

 

.. WARNING:: 

 

Outside of the context of symmetric modules over a commutative 

ring, the specifications of this category are fuzzy and not 

yet set in stone (see below). The code in this category and 

its subcategories is therefore prone to bugs or arbitrary 

limitations in this case. 

 

EXAMPLES:: 

 

sage: Modules(ZZ) 

Category of modules over Integer Ring 

sage: Modules(QQ) 

Category of vector spaces over Rational Field 

 

sage: Modules(Rings()) 

Category of modules over rings 

sage: Modules(FiniteFields()) 

Category of vector spaces over finite enumerated fields 

 

sage: Modules(Integers(9)) 

Category of modules over Ring of integers modulo 9 

 

sage: Modules(Integers(9)).super_categories() 

[Category of bimodules over Ring of integers modulo 9 on the left and Ring of integers modulo 9 on the right] 

 

sage: Modules(ZZ).super_categories() 

[Category of bimodules over Integer Ring on the left and Integer Ring on the right] 

 

sage: Modules == RingModules 

True 

 

sage: Modules(ZZ['x']).is_abelian() # see #6081 

True 

 

TESTS:: 

 

sage: TestSuite(Modules(ZZ)).run() 

 

.. TODO:: 

 

- Clarify the distinction, if any, with ``BiModules(R, R)``. 

In particular, if `R` is a commutative ring (e.g. a field), 

some pieces of the code possibly assume that `M` is a 

*symmetric `R`-`R`-bimodule*: 

 

.. MATH:: 

 

r*x = x*r \qquad \forall r \in R \text{ and } x \in M 

 

- Make sure that non symmetric modules are properly supported 

by all the code, and advertise it. 

 

- Make sure that non commutative rings are properly supported 

by all the code, and advertise it. 

 

- Add support for base semirings. 

 

- Implement a ``FreeModules(R)`` category, when so prompted by a 

concrete use case: e.g. modeling a free module with several 

bases (using :meth:`Sets.SubcategoryMethods.Realizations`) 

or with an atlas of local maps (see e.g. :trac:`15916`). 

""" 

 

@staticmethod 

def __classcall_private__(cls, base_ring, dispatch = True): 

r""" 

Implement the dispatching of ``Modules(field)`` to 

``VectorSpaces(field)``. 

 

This feature will later be extended, probably as a covariant 

functorial construction, to support modules over various kinds 

of rings (principal ideal domains, ...), or even over semirings. 

 

TESTS:: 

 

sage: C = Modules(ZZ); C 

Category of modules over Integer Ring 

sage: C is Modules(ZZ, dispatch = False) 

True 

sage: C is Modules(ZZ, dispatch = True) 

True 

sage: C._reduction 

(<class 'sage.categories.modules.Modules'>, (Integer Ring,), {'dispatch': False}) 

sage: TestSuite(C).run() 

 

sage: Modules(QQ) is VectorSpaces(QQ) 

True 

sage: Modules(QQ, dispatch = True) is VectorSpaces(QQ) 

True 

 

sage: C = Modules(NonNegativeIntegers()); C # todo: not implemented 

Category of semiring modules over Non negative integers 

 

sage: C = Modules(QQ, dispatch = False); C 

Category of modules over Rational Field 

sage: C._reduction 

(<class 'sage.categories.modules.Modules'>, (Rational Field,), {'dispatch': False}) 

sage: TestSuite(C).run() 

""" 

if dispatch: 

if base_ring in _Fields or (isinstance(base_ring, Category) 

and base_ring.is_subcategory(_Fields)): 

from .vector_spaces import VectorSpaces 

return VectorSpaces(base_ring, check=False) 

result = super(Modules, cls).__classcall__(cls, base_ring) 

result._reduction[2]['dispatch'] = False 

return result 

 

def super_categories(self): 

""" 

EXAMPLES:: 

 

sage: Modules(ZZ).super_categories() 

[Category of bimodules over Integer Ring on the left and Integer Ring on the right] 

 

Nota bene:: 

 

sage: Modules(QQ) 

Category of vector spaces over Rational Field 

sage: Modules(QQ).super_categories() 

[Category of modules over Rational Field] 

""" 

R = self.base_ring() 

return [Bimodules(R,R)] 

 

def additional_structure(self): 

r""" 

Return ``None``. 

 

Indeed, the category of modules defines no additional structure: 

a bimodule morphism between two modules is a module morphism. 

 

.. SEEALSO:: :meth:`Category.additional_structure` 

 

.. TODO:: Should this category be a :class:`~sage.categories.category_with_axiom.CategoryWithAxiom`? 

 

EXAMPLES:: 

 

sage: Modules(ZZ).additional_structure() 

""" 

return None 

 

class SubcategoryMethods: 

 

@cached_method 

def base_ring(self): 

r""" 

Return the base ring (category) for ``self``. 

 

This implements a ``base_ring`` method for all 

subcategories of ``Modules(K)``. 

 

EXAMPLES:: 

 

sage: C = Modules(QQ) & Semigroups(); C 

Join of Category of semigroups and Category of vector spaces over Rational Field 

sage: C.base_ring() 

Rational Field 

sage: C.base_ring.__module__ 

'sage.categories.modules' 

 

sage: C = Modules(Rings()) & Semigroups(); C 

Join of Category of semigroups and Category of modules over rings 

sage: C.base_ring() 

Category of rings 

sage: C.base_ring.__module__ 

'sage.categories.modules' 

 

sage: C = DescentAlgebra(QQ,3).B().category() 

sage: C.base_ring.__module__ 

'sage.categories.modules' 

sage: C.base_ring() 

Rational Field 

 

sage: C = QuasiSymmetricFunctions(QQ).F().category() 

sage: C.base_ring.__module__ 

'sage.categories.modules' 

sage: C.base_ring() 

Rational Field 

""" 

for C in self.super_categories(): 

# Is there a better way to ask if C is a subcategory of Modules? 

if hasattr(C, "base_ring"): 

return C.base_ring() 

assert False, "some super category of {} should be a category over base ring".format(self) 

 

def TensorProducts(self): 

r""" 

Return the full subcategory of objects of ``self`` constructed 

as tensor products. 

 

.. SEEALSO:: 

 

- :class:`.tensor.TensorProductsCategory` 

- :class:`~.covariant_functorial_construction.RegressiveCovariantFunctorialConstruction`. 

 

EXAMPLES:: 

 

sage: ModulesWithBasis(QQ).TensorProducts() 

Category of tensor products of vector spaces with basis over Rational Field 

""" 

return TensorProductsCategory.category_of(self) 

 

@cached_method 

def DualObjects(self): 

r""" 

Return the category of spaces constructed as duals of 

spaces of ``self``. 

 

The *dual* of a vector space `V` is the space consisting of 

all linear functionals on `V` (see :wikipedia:`Dual_space`). 

Additional structure on `V` can endow its dual with 

additional structure; for example, if `V` is a finite 

dimensional algebra, then its dual is a coalgebra. 

 

This returns the category of spaces constructed as dual of 

spaces in ``self``, endowed with the appropriate 

additional structure. 

 

.. WARNING:: 

 

- This semantic of ``dual`` and ``DualObject`` is 

imposed on all subcategories, in particular to make 

``dual`` a covariant functorial construction. 

 

A subcategory that defines a different notion of 

dual needs to use a different name. 

 

- Typically, the category of graded modules should 

define a separate ``graded_dual`` construction (see 

:trac:`15647`). For now the two constructions are 

not distinguished which is an oversimplified model. 

 

.. SEEALSO:: 

 

- :class:`.dual.DualObjectsCategory` 

- :class:`~.covariant_functorial_construction.CovariantFunctorialConstruction`. 

 

EXAMPLES:: 

 

sage: VectorSpaces(QQ).DualObjects() 

Category of duals of vector spaces over Rational Field 

 

The dual of a vector space is a vector space:: 

 

sage: VectorSpaces(QQ).DualObjects().super_categories() 

[Category of vector spaces over Rational Field] 

 

The dual of an algebra is a coalgebra:: 

 

sage: sorted(Algebras(QQ).DualObjects().super_categories(), key=str) 

[Category of coalgebras over Rational Field, 

Category of duals of vector spaces over Rational Field] 

 

The dual of a coalgebra is an algebra:: 

 

sage: sorted(Coalgebras(QQ).DualObjects().super_categories(), key=str) 

[Category of algebras over Rational Field, 

Category of duals of vector spaces over Rational Field] 

 

As a shorthand, this category can be accessed with the 

:meth:`~Modules.SubcategoryMethods.dual` method:: 

 

sage: VectorSpaces(QQ).dual() 

Category of duals of vector spaces over Rational Field 

 

TESTS:: 

 

sage: C = VectorSpaces(QQ).DualObjects() 

sage: C.base_category() 

Category of vector spaces over Rational Field 

sage: C.super_categories() 

[Category of vector spaces over Rational Field] 

sage: latex(C) 

\mathbf{DualObjects}(\mathbf{VectorSpaces}_{\Bold{Q}}) 

sage: TestSuite(C).run() 

""" 

return DualObjectsCategory.category_of(self) 

 

dual = DualObjects 

 

@cached_method 

def FiniteDimensional(self): 

r""" 

Return the full subcategory of the finite dimensional objects of ``self``. 

 

EXAMPLES:: 

 

sage: Modules(ZZ).FiniteDimensional() 

Category of finite dimensional modules over Integer Ring 

sage: Coalgebras(QQ).FiniteDimensional() 

Category of finite dimensional coalgebras over Rational Field 

sage: AlgebrasWithBasis(QQ).FiniteDimensional() 

Category of finite dimensional algebras with basis over Rational Field 

 

TESTS:: 

 

sage: TestSuite(Modules(ZZ).FiniteDimensional()).run() 

sage: Coalgebras(QQ).FiniteDimensional.__module__ 

'sage.categories.modules' 

""" 

return self._with_axiom("FiniteDimensional") 

 

@cached_method 

def Filtered(self, base_ring=None): 

r""" 

Return the subcategory of the filtered objects of ``self``. 

 

INPUT: 

 

- ``base_ring`` -- this is ignored 

 

EXAMPLES:: 

 

sage: Modules(ZZ).Filtered() 

Category of filtered modules over Integer Ring 

 

sage: Coalgebras(QQ).Filtered() 

Join of Category of filtered modules over Rational Field 

and Category of coalgebras over Rational Field 

 

sage: AlgebrasWithBasis(QQ).Filtered() 

Category of filtered algebras with basis over Rational Field 

 

.. TODO:: 

 

- Explain why this does not commute with :meth:`WithBasis` 

- Improve the support for covariant functorial 

constructions categories over a base ring so as to 

get rid of the ``base_ring`` argument. 

 

TESTS:: 

 

sage: Coalgebras(QQ).Graded.__module__ 

'sage.categories.modules' 

""" 

assert base_ring is None or base_ring is self.base_ring() 

from sage.categories.filtered_modules import FilteredModulesCategory 

return FilteredModulesCategory.category_of(self) 

 

@cached_method 

def Graded(self, base_ring=None): 

r""" 

Return the subcategory of the graded objects of ``self``. 

 

INPUT: 

 

- ``base_ring`` -- this is ignored 

 

EXAMPLES:: 

 

sage: Modules(ZZ).Graded() 

Category of graded modules over Integer Ring 

 

sage: Coalgebras(QQ).Graded() 

Join of Category of graded modules over Rational Field and Category of coalgebras over Rational Field 

 

sage: AlgebrasWithBasis(QQ).Graded() 

Category of graded algebras with basis over Rational Field 

 

.. TODO:: 

 

- Explain why this does not commute with :meth:`WithBasis` 

- Improve the support for covariant functorial 

constructions categories over a base ring so as to 

get rid of the ``base_ring`` argument. 

 

TESTS:: 

 

sage: Coalgebras(QQ).Graded.__module__ 

'sage.categories.modules' 

""" 

assert base_ring is None or base_ring is self.base_ring() 

from sage.categories.graded_modules import GradedModulesCategory 

return GradedModulesCategory.category_of(self) 

 

@cached_method 

def Super(self, base_ring=None): 

r""" 

Return the super-analogue category of ``self``. 

 

INPUT: 

 

- ``base_ring`` -- this is ignored 

 

EXAMPLES:: 

 

sage: Modules(ZZ).Super() 

Category of super modules over Integer Ring 

 

sage: Coalgebras(QQ).Super() 

Category of super coalgebras over Rational Field 

 

sage: AlgebrasWithBasis(QQ).Super() 

Category of super algebras with basis over Rational Field 

 

.. TODO:: 

 

- Explain why this does not commute with :meth:`WithBasis` 

- Improve the support for covariant functorial 

constructions categories over a base ring so as to 

get rid of the ``base_ring`` argument. 

 

TESTS:: 

 

sage: Coalgebras(QQ).Super.__module__ 

'sage.categories.modules' 

""" 

assert base_ring is None or base_ring is self.base_ring() 

from sage.categories.super_modules import SuperModulesCategory 

return SuperModulesCategory.category_of(self) 

 

@cached_method 

def WithBasis(self): 

r""" 

Return the full subcategory of the objects of ``self`` with 

a distinguished basis. 

 

EXAMPLES:: 

 

sage: Modules(ZZ).WithBasis() 

Category of modules with basis over Integer Ring 

sage: Coalgebras(QQ).WithBasis() 

Category of coalgebras with basis over Rational Field 

sage: AlgebrasWithBasis(QQ).WithBasis() 

Category of algebras with basis over Rational Field 

 

TESTS:: 

 

sage: TestSuite(Modules(ZZ).WithBasis()).run() 

sage: Coalgebras(QQ).WithBasis.__module__ 

'sage.categories.modules' 

""" 

return self._with_axiom("WithBasis") 

 

class FiniteDimensional(CategoryWithAxiom_over_base_ring): 

 

def extra_super_categories(self): 

""" 

Implement the fact that a finite dimensional module over a finite 

ring is finite. 

 

EXAMPLES:: 

 

sage: Modules(IntegerModRing(4)).FiniteDimensional().extra_super_categories() 

[Category of finite sets] 

sage: Modules(ZZ).FiniteDimensional().extra_super_categories() 

[] 

sage: Modules(GF(5)).FiniteDimensional().is_subcategory(Sets().Finite()) 

True 

sage: Modules(ZZ).FiniteDimensional().is_subcategory(Sets().Finite()) 

False 

 

sage: Modules(Rings().Finite()).FiniteDimensional().is_subcategory(Sets().Finite()) 

True 

sage: Modules(Rings()).FiniteDimensional().is_subcategory(Sets().Finite()) 

False 

""" 

base_ring = self.base_ring() 

FiniteSets = Sets().Finite() 

if (isinstance(base_ring, Category) and 

base_ring.is_subcategory(FiniteSets)) or \ 

base_ring in FiniteSets: 

return [FiniteSets] 

else: 

return [] 

 

Filtered = LazyImport('sage.categories.filtered_modules', 'FilteredModules') 

Graded = LazyImport('sage.categories.graded_modules', 'GradedModules') 

Super = LazyImport('sage.categories.super_modules', 'SuperModules') 

# at_startup currently needed for MatrixSpace, see #22955 (e.g., comment:20) 

WithBasis = LazyImport('sage.categories.modules_with_basis', 'ModulesWithBasis', 

at_startup=True) 

 

class ParentMethods: 

@cached_method 

def tensor_square(self): 

""" 

Returns the tensor square of ``self`` 

 

EXAMPLES:: 

 

sage: A = HopfAlgebrasWithBasis(QQ).example() 

sage: A.tensor_square() 

An example of Hopf algebra with basis: 

the group algebra of the Dihedral group of order 6 

as a permutation group over Rational Field # An example 

of Hopf algebra with basis: the group algebra of the Dihedral 

group of order 6 as a permutation group over Rational Field 

""" 

return tensor([self, self]) 

 

class ElementMethods: 

pass 

 

class Homsets(HomsetsCategory): 

r""" 

The category of homomorphism sets `\hom(X,Y)` for `X`, `Y` modules. 

""" 

 

def extra_super_categories(self): 

""" 

EXAMPLES:: 

 

sage: Modules(ZZ).Homsets().extra_super_categories() 

[Category of modules over Integer Ring] 

""" 

return [Modules(self.base_category().base_ring())] 

 

def base_ring(self): 

""" 

EXAMPLES:: 

 

sage: Modules(ZZ).Homsets().base_ring() 

Integer Ring 

 

.. TODO:: 

 

Generalize this so that any homset category of a full 

subcategory of modules over a base ring is a category over 

this base ring. 

""" 

return self.base_category().base_ring() 

 

class ParentMethods: 

 

@cached_method 

def base_ring(self): 

""" 

Return the base ring of ``self``. 

 

EXAMPLES:: 

 

sage: E = CombinatorialFreeModule(ZZ, [1,2,3]) 

sage: F = CombinatorialFreeModule(ZZ, [2,3,4]) 

sage: H = Hom(E, F) 

sage: H.base_ring() 

Integer Ring 

 

This ``base_ring`` method is actually overridden by 

:meth:`sage.structure.category_object.CategoryObject.base_ring`:: 

 

sage: H.base_ring.__module__ 

 

Here we call it directly:: 

 

sage: method = H.category().parent_class.base_ring 

sage: method.__get__(H)() 

Integer Ring 

""" 

return self.domain().base_ring() 

 

@cached_method 

def zero(self): 

""" 

EXAMPLES:: 

 

sage: E = CombinatorialFreeModule(ZZ, [1,2,3]) 

sage: F = CombinatorialFreeModule(ZZ, [2,3,4]) 

sage: H = Hom(E, F) 

sage: f = H.zero() 

sage: f 

Generic morphism: 

From: Free module generated by {1, 2, 3} over Integer Ring 

To: Free module generated by {2, 3, 4} over Integer Ring 

sage: f(E.monomial(2)) 

0 

sage: f(E.monomial(3)) == F.zero() 

True 

 

TESTS: 

 

We check that ``H.zero()`` is picklable:: 

 

sage: loads(dumps(f.parent().zero())) 

Generic morphism: 

From: Free module generated by {1, 2, 3} over Integer Ring 

To: Free module generated by {2, 3, 4} over Integer Ring 

""" 

from sage.misc.constant_function import ConstantFunction 

return self(ConstantFunction(self.codomain().zero())) 

 

class Endset(CategoryWithAxiom_over_base_ring): 

""" 

The category of endomorphism sets `End(X)` for `X` 

a module (this is not used yet) 

""" 

def extra_super_categories(self): 

""" 

Implement the fact that the endomorphism set of a module is an algebra. 

 

.. SEEALSO:: :meth:`CategoryWithAxiom.extra_super_categories` 

 

EXAMPLES:: 

 

sage: Modules(ZZ).Endsets().extra_super_categories() 

[Category of magmatic algebras over Integer Ring] 

 

sage: End(ZZ^3) in Algebras(ZZ) 

True 

""" 

from .magmatic_algebras import MagmaticAlgebras 

return [MagmaticAlgebras(self.base_category().base_ring())] 

 

class CartesianProducts(CartesianProductsCategory): 

""" 

The category of modules constructed as Cartesian products of modules 

 

This construction gives the direct product of modules. The 

implementation is based on the following resources: 

 

- http://groups.google.fr/group/sage-devel/browse_thread/thread/35a72b1d0a2fc77a/348f42ae77a66d16#348f42ae77a66d16 

- :wikipedia:`Direct_product` 

""" 

def extra_super_categories(self): 

""" 

A Cartesian product of modules is endowed with a natural 

module structure. 

 

EXAMPLES:: 

 

sage: Modules(ZZ).CartesianProducts().extra_super_categories() 

[Category of modules over Integer Ring] 

sage: Modules(ZZ).CartesianProducts().super_categories() 

[Category of Cartesian products of commutative additive groups, 

Category of modules over Integer Ring] 

""" 

return [self.base_category()] 

 

class ParentMethods: 

def base_ring(self): 

""" 

Return the base ring of this Cartesian product. 

 

EXAMPLES:: 

 

sage: E = CombinatorialFreeModule(ZZ, [1,2,3]) 

sage: F = CombinatorialFreeModule(ZZ, [2,3,4]) 

sage: C = cartesian_product([E, F]); C 

Free module generated by {1, 2, 3} over Integer Ring (+) 

Free module generated by {2, 3, 4} over Integer Ring 

sage: C.base_ring() 

Integer Ring 

""" 

return self._sets[0].base_ring() 

 

class TensorProducts(TensorProductsCategory): 

""" 

The category of modules constructed by tensor product of modules. 

""" 

@cached_method 

def extra_super_categories(self): 

""" 

EXAMPLES:: 

 

sage: Modules(ZZ).TensorProducts().extra_super_categories() 

[Category of modules over Integer Ring] 

sage: Modules(ZZ).TensorProducts().super_categories() 

[Category of modules over Integer Ring] 

""" 

return [self.base_category()]