Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

r""" 

Canonical forms and automorphisms for linear codes over finite fields 

  

We implemented the algorithm described in [Feu2009]_ which computes, a unique 

code (canonical form) in the equivalence class of a given 

linear code `C \leq \GF{q}^n`. Furthermore, this algorithm will return the 

automorphism group of `C`, too. You will find more details about the algorithm 

in the documentation of the class 

:class:`~sage.coding.codecan.autgroup_can_label.LinearCodeAutGroupCanLabel`. 

  

The equivalence of codes is modeled as a group action by the group 

`G = {\GF{q}^*}^n \rtimes (Aut(\GF{q}) \times S_n)` on the set 

of subspaces of `\GF{q}^n` . The group `G` will be called the 

semimonomial group of degree `n`. 

  

The algorithm is started by initializing the class 

:class:`~sage.coding.codecan.autgroup_can_label.LinearCodeAutGroupCanLabel`. 

When the object gets available, all computations are already finished and 

you can access the relevant data using the member functions: 

  

* :meth:`~sage.coding.codecan.autgroup_can_label.LinearCodeAutGroupCanLabel.get_canonical_form` 

  

* :meth:`~sage.coding.codecan.autgroup_can_label.LinearCodeAutGroupCanLabel.get_transporter` 

  

* :meth:`~sage.coding.codecan.autgroup_can_label.LinearCodeAutGroupCanLabel.get_autom_gens` 

  

People do also use some weaker notions of equivalence, namely 

**permutational** equivalence and monomial equivalence (**linear** isometries). 

These can be seen as the subgroups `S_n` and `{\GF{q}^*}^n \rtimes S_n` of `G`. 

If you are interested in one of these notions, you can just pass 

the optional parameter ``algorithm_type``. 

  

A second optional parameter ``P`` allows you to restrict the 

group of permutations `S_n` to a subgroup which respects the coloring given 

by ``P``. 

  

AUTHORS: 

  

- Thomas Feulner (2012-11-15): initial version 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import LinearCodeAutGroupCanLabel 

sage: C = codes.HammingCode(GF(3), 3).dual_code() 

sage: P = LinearCodeAutGroupCanLabel(C) 

sage: P.get_canonical_form().generator_matrix() 

[1 0 0 0 0 1 1 1 1 1 1 1 1] 

[0 1 0 1 1 0 0 1 1 2 2 1 2] 

[0 0 1 1 2 1 2 1 2 1 2 0 0] 

sage: LinearCode(P.get_transporter()*C.generator_matrix()) == P.get_canonical_form() 

True 

sage: A = P.get_autom_gens() 

sage: all( [ LinearCode(a*C.generator_matrix()) == C for a in A]) 

True 

sage: P.get_autom_order() == GL(3, GF(3)).order() 

True 

  

If the dimension of the dual code is smaller, we will work on this code:: 

  

sage: C2 = codes.HammingCode(GF(3), 3) 

sage: P2 = LinearCodeAutGroupCanLabel(C2) 

sage: P2.get_canonical_form().parity_check_matrix() == P.get_canonical_form().generator_matrix() 

True 

  

There is a specialization of this algorithm to pass a coloring on the 

coordinates. This is just a list of lists, telling the algorithm which 

columns do share the same coloring:: 

  

sage: C = codes.HammingCode(GF(4, 'a'), 3).dual_code() 

sage: P = LinearCodeAutGroupCanLabel(C, P=[ [0], [1], list(range(2, C.length())) ]) 

sage: P.get_autom_order() 

864 

sage: A = [a.get_perm() for a in P.get_autom_gens()] 

sage: H = SymmetricGroup(21).subgroup(A) 

sage: H.orbits() 

[[1], 

[2], 

[3, 5, 4], 

[6, 16, 8, 21, 12, 9, 13, 18, 11, 19, 15, 7, 20, 14, 17, 10]] 

  

We can also restrict the group action to linear isometries:: 

  

sage: P = LinearCodeAutGroupCanLabel(C, algorithm_type="linear") 

sage: P.get_autom_order() == GL(3, GF(4, 'a')).order() 

True 

  

and to the action of the symmetric group only:: 

  

sage: P = LinearCodeAutGroupCanLabel(C, algorithm_type="permutational") 

sage: P.get_autom_order() == C.permutation_automorphism_group().order() 

True 

""" 

#***************************************************************************** 

# Copyright (C) 2012 Thomas Feulner <thomas.feulner@uni-bayreuth.de> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

  

from sage.coding.codecan.codecan import PartitionRefinementLinearCode 

from sage.combinat.permutation import Permutation 

from sage.functions.other import factorial 

  

def _cyclic_shift(n, p): 

r""" 

If ``p`` is a list of pairwise distinct coordinates in ``range(n)``, 

then this function returns the cyclic shift of 

the coordinates contained in ``p``, when acting on a vector of length `n`. 

  

Note that the domain of a ``Permutation`` is ``range(1, n+1)``. 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import _cyclic_shift 

sage: p = _cyclic_shift(10, [2,7,4,1]); p 

[1, 3, 8, 4, 2, 6, 7, 5, 9, 10] 

  

We prove that the action is as expected:: 

  

sage: t = list(range(10)) 

sage: p.action(t) 

[0, 2, 7, 3, 1, 5, 6, 4, 8, 9] 

""" 

x = list(xrange(1, n + 1)) 

for i in xrange(1, len(p)): 

x[p[i - 1]] = p[i] + 1 

x[p[len(p) - 1]] = p[0] + 1 

return Permutation(x) 

  

class LinearCodeAutGroupCanLabel: 

r""" 

Canonical representatives and automorphism group computation for linear 

codes over finite fields. 

  

There are several notions of equivalence for linear codes: 

Let `C`, `D` be linear codes of length `n` and dimension `k`. 

`C` and `D` are said to be 

  

- permutational equivalent, if there is some permutation `\pi \in S_n` 

such that `(c_{\pi(0)}, \ldots, c_{\pi(n-1)}) \in D` for all `c \in C`. 

  

- linear equivalent, if there is some permutation `\pi \in S_n` and a 

vector `\phi \in {\GF{q}^*}^n` of units of length `n` such that 

`(c_{\pi(0)} \phi_0^{-1}, \ldots, c_{\pi(n-1)} \phi_{n-1}^{-1}) \in D` 

for all `c \in C`. 

  

- semilinear equivalent, if there is some permutation `\pi \in S_n`, a 

vector `\phi` of units of length `n` and a field automorphism `\alpha` 

such that 

`(\alpha(c_{\pi(0)}) \phi_0^{-1}, \ldots, \alpha( c_{\pi(n-1)}) \phi_{n-1}^{-1} ) \in D` 

for all `c \in C`. 

  

These are group actions. This class provides an algorithm that will compute 

a unique representative `D` in the orbit of the given linear code `C`. 

Furthermore, the group element `g` with `g * C = D` and the automorphism 

group of `C` will be computed as well. 

  

There is also the possibility to restrict the permutational part of this 

action to a Young subgroup of `S_n`. This could be achieved by passing a 

partition `P` (as a list of lists) of the set `\{0, \ldots, n-1\}`. This is 

an option which is also available in the computation of a canonical form of 

a graph, see :meth:`sage.graphs.generic_graph.GenericGraph.canonical_label`. 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import LinearCodeAutGroupCanLabel 

sage: C = codes.HammingCode(GF(3), 3).dual_code() 

sage: P = LinearCodeAutGroupCanLabel(C) 

sage: P.get_canonical_form().generator_matrix() 

[1 0 0 0 0 1 1 1 1 1 1 1 1] 

[0 1 0 1 1 0 0 1 1 2 2 1 2] 

[0 0 1 1 2 1 2 1 2 1 2 0 0] 

sage: LinearCode(P.get_transporter()*C.generator_matrix()) == P.get_canonical_form() 

True 

sage: a = P.get_autom_gens()[0] 

sage: (a*C.generator_matrix()).echelon_form() == C.generator_matrix().echelon_form() 

True 

sage: P.get_autom_order() == GL(3, GF(3)).order() 

True 

""" 

  

def __init__(self, C, P=None, algorithm_type="semilinear"): 

""" 

see :class:`LinearCodeAutGroupCanLabel` 

  

INPUT: 

  

- ``C`` -- a linear code 

  

- ``P`` (optional) -- a coloring of the coordinates i.e. a partition 

(list of disjoint lists) of [0 , ..., C.length()-1 ] 

  

- ``algorithm_type`` (optional) -- which defines the acting group, either 

  

* ``permutational`` 

  

* ``linear`` 

  

* ``semilinear`` 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import LinearCodeAutGroupCanLabel 

sage: C = codes.HammingCode(GF(2), 3).dual_code() 

sage: P = LinearCodeAutGroupCanLabel(C) 

sage: P.get_canonical_form().generator_matrix() 

[1 0 0 0 1 1 1] 

[0 1 0 1 0 1 1] 

[0 0 1 1 1 1 0] 

sage: P2 = LinearCodeAutGroupCanLabel(C, P=[[0,3,5],[1,2,4,6]], 

....: algorithm_type="permutational") 

sage: P2.get_canonical_form().generator_matrix() 

[1 1 1 0 0 0 1] 

[0 1 0 1 1 0 1] 

[0 0 1 0 1 1 1] 

""" 

from sage.groups.semimonomial_transformations.semimonomial_transformation_group import SemimonomialTransformationGroup 

from sage.coding.linear_code import LinearCode, AbstractLinearCode 

  

if not isinstance(C, AbstractLinearCode): 

raise TypeError("%s is not a linear code"%C) 

  

self.C = C 

mat = C.generator_matrix() 

F = mat.base_ring() 

S = SemimonomialTransformationGroup(F, mat.ncols()) 

  

if P is None: 

P = [list(xrange(mat.ncols()))] 

  

pos2P = [-1] * mat.ncols() 

for i in xrange(len(P)): 

P[i].sort(reverse=True) 

for x in P[i]: 

pos2P[x] = i 

  

col_list = mat.columns() 

nz = [i for i in xrange(mat.ncols()) if not col_list[i].is_zero()] 

z = [(pos2P[i], i) for i in xrange(mat.ncols()) if col_list[i].is_zero()] 

z.sort() 

z = [i for (p, i) in z] 

  

normalization_factors = [ F.one() ] * mat.ncols() 

if algorithm_type == "permutational": 

for c in col_list: 

c.set_immutable() 

else: 

for x in nz: 

normalization_factors[x] = col_list[x][(col_list[x].support())[0]] 

col_list[x] = normalization_factors[x] ** (-1) * col_list[x] 

col_list[x].set_immutable() 

  

normalization = S(v=normalization_factors) 

normalization_inverse = normalization ** (-1) 

col_set = list({col_list[y] for y in nz }) 

col2pos = [] 

col2P = [] 

for c in col_set: 

X = [(pos2P[y], y) for y in xrange(mat.ncols()) if col_list[y] == c ] 

X.sort() 

col2pos.append([b for (a, b) in X ]) 

col2P.append([a for (a, b) in X ]) 

  

zipped = sorted(zip(col2P, col_set, col2pos)) 

  

col2P = [qty for (qty, c, pos) in zipped] 

col_set = [c for (qty, c, pos) in zipped] 

col2pos = [pos for (qty, c, pos) in zipped] 

P_refined = [] 

p = [0] 

act_qty = col2P[0] 

for i in xrange(1, len(col_set)): 

if act_qty == col2P[i]: 

p.append(i) 

else: 

P_refined.append(p) 

p = [i] 

act_qty = col2P[i] 

P_refined.append(p) 

# now we can start the main algorithm: 

from sage.matrix.constructor import matrix 

  

if len(col_set) >= 2 * mat.nrows(): 

# the dimension of the code is smaller or equal than 

# the dimension of the dual code 

# in this case we work with the code itself. 

pr = PartitionRefinementLinearCode(len(col_set), 

matrix(col_set).transpose(), P=P_refined, algorithm_type=algorithm_type) 

  

# this command allows you some advanced debuging 

# it prints the backtrack tree -> must be activated when installing 

# pr._latex_view(title="MyTitle") #this will provide you some visual representation of what is going on 

  

can_transp = pr.get_transporter() 

can_col_set = pr.get_canonical_form().columns() 

self._PGammaL_autom_gens = self._compute_PGammaL_automs(pr.get_autom_gens(), 

normalization, normalization_inverse, col2pos) 

self._PGammaL_autom_size = pr.get_autom_order_permutation() 

self._PGammaL_autom_size *= pr.get_autom_order_inner_stabilizer() 

self._full_autom_order = self._PGammaL_autom_size 

self._PGammaL_autom_size /= (len(self.C.base_ring()) - 1) 

elif mat.nrows() == len(col_set): 

# it could happen (because of the recursive call, see `else`) that 

# the canonical form is the identity matrix 

n = len(col_set) 

from sage.modules.free_module import VectorSpace 

can_col_set = VectorSpace(F, n).gens() 

A = [] 

self._full_autom_order = 1 

S_short = SemimonomialTransformationGroup(F, n) 

can_transp = S_short.one() 

if algorithm_type != "permutational": 

# linear or semilinear 

if algorithm_type == "semilinear": 

A.append(S_short(autom=F.hom([F.gen() ** F.characteristic()]))) 

self._full_autom_order *= F.degree() 

for p in P_refined: 

m = [F.one()] * n 

m[p[0]] = F.gen() 

A.append(S_short(v=m)) 

self._full_autom_order *= (len(F) - 1) ** n 

for p in P_refined: 

if len(p) > 1: 

A.append(S_short(perm=_cyclic_shift(n, p[:2]))) 

if len(p) > 2: 

# cyclic shift of all elements 

A.append(S_short(perm=_cyclic_shift(n, p))) 

self._full_autom_order *= factorial(len(p)) 

self._PGammaL_autom_size = self._full_autom_order / (len(F) - 1) 

self._PGammaL_autom_gens = self._compute_PGammaL_automs(A, 

normalization, normalization_inverse, col2pos) 

else: 

# use the dual code for the computations 

# this might have zero columns or multiple columns, hence 

# we call this algorithm again. 

short_dual_code = LinearCode(matrix(col_set).transpose()).dual_code() 

agcl = LinearCodeAutGroupCanLabel(short_dual_code, 

P=P_refined, algorithm_type=algorithm_type) 

can_transp = agcl.get_transporter() 

can_transp.invert_v() 

can_col_set = agcl.get_canonical_form().parity_check_matrix().columns() 

A = agcl.get_autom_gens() 

for a in A: 

a.invert_v() 

self._PGammaL_autom_gens = self._compute_PGammaL_automs(A, 

normalization, normalization_inverse, col2pos) 

self._PGammaL_autom_size = agcl.get_PGammaL_order() 

self._full_autom_order = agcl.get_autom_order() 

  

count = 0 

block_ptr = [] 

canonical_form = matrix(F, mat.ncols(), mat.nrows()) 

  

perm = [-1] * mat.ncols() 

mult = [F.one()] * mat.ncols() 

  

for i in xrange(len(can_col_set)): 

img = can_transp.get_perm()(i + 1) 

for j in col2pos[img - 1]: 

pos = P[ pos2P[j] ].pop() 

canonical_form[ pos ] = can_col_set[i] 

mult[pos] = can_transp.get_v()[i] 

perm[pos] = j + 1 

  

it = iter(z) 

for p in P: 

while len(p) > 0: 

pos = p.pop() 

perm[pos] = next(it) + 1 

  

self._canonical_form = LinearCode(canonical_form.transpose()) 

self._transporter = S(perm=Permutation(perm), v=mult, autom=can_transp.get_autom()) * normalization 

self._trivial_autom_gens, a = self._compute_trivial_automs(normalization, 

normalization_inverse, z, [pos2P[x] for x in z], zero_column_case=True) 

self._full_autom_order *= a 

  

  

for i in xrange(len(col2P)): 

if len(col2P[i]) > 1: 

A, a = self._compute_trivial_automs(normalization, 

normalization_inverse, col2pos[i], col2P[i]) 

self._full_autom_order *= a 

self._trivial_autom_gens += A 

  

@staticmethod 

def _compute_trivial_automs(normalization, normalization_inverse, col2pos, col2P, zero_column_case=False): 

""" 

In order to call the algorithm described in 

:class:`PartitionRefinementLinearCode` we remove 

zero columns and multiple occurrences of the same column (up to 

normalization). 

  

This function computes a set of generators for the allowed permutations 

of such a block of equal columns (depending on the partition). 

If ``zero_column_case==True`` we also add a generator for the 

multiplication by units. Furthermore, we return the order of this group. 

  

INPUT: 

  

- ``normalization`` -- an element in the semimonomial transformation group `S` 

  

- ``normalization_inverse`` -- the inverse of ``normalization`` 

  

- ``col2pos`` -- a list of disjoint indices in ``range(n)`` 

  

- ``col2P`` -- an increasing list of integers, with 

``len(col2P) == len(col2pos)`` with ``col2P[i] == col2P[j]`` if and 

only if the indices ``col2pos[i]`` and ``col2pos[j]`` are in the 

same partition 

  

- ``zero_column_case`` (boolean) -- set to ``True`` iff we are dealing 

with the zero column 

  

OUTPUT: 

  

- a list of generators in `S` 

  

- the order of this group 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import LinearCodeAutGroupCanLabel 

sage: S = SemimonomialTransformationGroup(GF(3), 10) 

sage: s = S.one() 

sage: col2pos = [1,4,2,3,5] 

sage: col2P = [1,1,3,3,3] 

sage: LinearCodeAutGroupCanLabel._compute_trivial_automs(s, s, col2pos, col2P, True) 

([((1, 2, 1, 1, 1, 1, 1, 1, 1, 1); (), Ring endomorphism of Finite Field of size 3 

Defn: 1 |--> 1), ((1, 1, 1, 1, 1, 1, 1, 1, 1, 1); (2,5), Ring endomorphism of Finite Field of size 3 

Defn: 1 |--> 1), ((1, 1, 2, 1, 1, 1, 1, 1, 1, 1); (), Ring endomorphism of Finite Field of size 3 

Defn: 1 |--> 1), ((1, 1, 1, 1, 1, 1, 1, 1, 1, 1); (3,4), Ring endomorphism of Finite Field of size 3 

Defn: 1 |--> 1), ((1, 1, 1, 1, 1, 1, 1, 1, 1, 1); (3,4,6), Ring endomorphism of Finite Field of size 3 

Defn: 1 |--> 1)], 384) 

""" 

S = normalization.parent() 

F = S.base_ring() 

n = S.degree() 

  

beg = 0 

if zero_column_case: 

aut_order = (len(F) - 1) ** len(col2P) 

else: 

aut_order = 1 

A = [] 

while beg < len(col2P): 

if zero_column_case: 

mult = [F.one()] * n 

mult[col2pos[beg]] = F.primitive_element() 

A.append(S(v=mult)) 

P_indx = col2P[beg] 

j = beg + 1 

while j < len(col2P) and col2P[j] == P_indx: 

j += 1 

  

if j - beg > 1: 

aut_order *= factorial(j - beg) 

# we append a transposition of the first two elements 

A.append(normalization_inverse * 

S(perm=_cyclic_shift(n, col2pos[beg:beg + 2])) * normalization) 

if j - beg > 2: 

# we append a cycle on all elements 

A.append(normalization_inverse * 

S(perm=_cyclic_shift(n, col2pos[beg:j])) * normalization) 

beg = j 

return A, aut_order 

  

@staticmethod 

def _compute_PGammaL_automs(gens, normalization, normalization_inverse, col2pos): 

""" 

In order to call the algorithm described in 

:class:`sage.coding.codecan.codecan.PartitionRefinementLinearCode` we removed 

zero columns and multiple occurrences of the same column (up to normalization). 

This function lifts the generators ``gens`` which were returned to their full length. 

  

INPUT: 

  

- ``gens`` -- a list of semimonomial transformation group elements of length `m` 

  

- ``normalization`` -- a semimonomial transformation of length `n` 

  

- ``normalization_inverse`` -- the inverse of ``normalization`` 

  

- ``col2pos`` -- a partition of ``range(n)`` into `m` disjoint sets, 

given as a list of lists. The elements `g` in ``gens`` are only 

allowed to permute entries of ``col2pos`` of equal length. 

  

OUTPUT: 

  

- a list of semimonomial transformations containing 

``normalization`` which are the lifts of the elements in ``gens`` 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import LinearCodeAutGroupCanLabel 

sage: S = SemimonomialTransformationGroup(GF(3), 10) 

sage: T = SemimonomialTransformationGroup(GF(3), 5) 

sage: s = S.one() 

sage: col2pos = [[1,4,2,3,5], [0],[6],[8],[7,9]] 

sage: gens = [T(perm=Permutation([1,3,4,2,5]), v=[2,1,1,1,1])] 

sage: LinearCodeAutGroupCanLabel._compute_PGammaL_automs(gens, s, s, col2pos) 

[((1, 2, 2, 2, 2, 2, 1, 1, 1, 1); (1,7,9), Ring endomorphism of Finite Field of size 3 

Defn: 1 |--> 1)] 

""" 

S = normalization.parent() 

n = S.degree() 

A = [] 

for g in gens: 

perm = list(xrange(1, n + 1)) 

mult = [S.base_ring().one()] * n 

short_perm = g.get_perm() 

short_mult = g.get_v() 

for i in xrange(len(col2pos)): 

c = col2pos[i] 

img_iter = iter(col2pos[short_perm(i + 1) - 1]) 

for x in c: 

perm[x] = next(img_iter) + 1 

mult[x] = short_mult[i] 

A.append(normalization_inverse * S(perm=perm, v=mult, autom=g.get_autom()) * normalization) 

return A 

  

def get_canonical_form(self): 

""" 

Return the canonical orbit representative we computed. 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import LinearCodeAutGroupCanLabel 

sage: C = codes.HammingCode(GF(3), 3).dual_code() 

sage: CF1 = LinearCodeAutGroupCanLabel(C).get_canonical_form() 

sage: s = SemimonomialTransformationGroup(GF(3), C.length()).an_element() 

sage: C2 = LinearCode(s*C.generator_matrix()) 

sage: CF2 = LinearCodeAutGroupCanLabel(C2).get_canonical_form() 

sage: CF1 == CF2 

True 

""" 

return self._canonical_form 

  

def get_transporter(self): 

""" 

Return the element which maps the code to its canonical form. 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import LinearCodeAutGroupCanLabel 

sage: C = codes.HammingCode(GF(2), 3).dual_code() 

sage: P = LinearCodeAutGroupCanLabel(C) 

sage: g = P.get_transporter() 

sage: D = P.get_canonical_form() 

sage: (g*C.generator_matrix()).echelon_form() == D.generator_matrix().echelon_form() 

True 

""" 

return self._transporter 

  

def get_autom_gens(self): 

""" 

Return a generating set for the automorphism group of the code. 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import LinearCodeAutGroupCanLabel 

sage: C = codes.HammingCode(GF(2), 3).dual_code() 

sage: A = LinearCodeAutGroupCanLabel(C).get_autom_gens() 

sage: Gamma = C.generator_matrix().echelon_form() 

sage: all([(g*Gamma).echelon_form() == Gamma for g in A]) 

True 

""" 

return self._PGammaL_autom_gens + self._trivial_autom_gens 

  

def get_autom_order(self): 

""" 

Return the size of the automorphism group of the code. 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import LinearCodeAutGroupCanLabel 

sage: C = codes.HammingCode(GF(2), 3).dual_code() 

sage: LinearCodeAutGroupCanLabel(C).get_autom_order() 

168 

""" 

return self._full_autom_order 

  

  

def get_PGammaL_gens(self): 

r""" 

Return the set of generators translated to the group `P\Gamma L(k,q)`. 

  

There is a geometric point of view of code equivalence. A linear 

code is identified with the multiset of points in the finite projective 

geometry `PG(k-1, q)`. The equivalence of codes translates to the 

natural action of `P\Gamma L(k,q)`. Therefore, we may interpret the 

group as a subgroup of `P\Gamma L(k,q)` as well. 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import LinearCodeAutGroupCanLabel 

sage: C = codes.HammingCode(GF(4, 'a'), 3).dual_code() 

sage: A = LinearCodeAutGroupCanLabel(C).get_PGammaL_gens() 

sage: Gamma = C.generator_matrix() 

sage: N = [ x.monic() for x in Gamma.columns() ] 

sage: all([ (g[0]*n.apply_map(g[1])).monic() in N for n in N for g in A]) 

True 

""" 

Gamma = self.C.generator_matrix() 

res = [] 

for a in self._PGammaL_autom_gens: 

B = Gamma.solve_left(a * Gamma, check=True) 

res.append([B, a.get_autom()]) 

  

return res 

  

def get_PGammaL_order(self): 

r""" 

Return the size of the automorphism group as a subgroup of 

`P\Gamma L(k,q)`. 

  

There is a geometric point of view of code equivalence. A linear 

code is identified with the multiset of points in the finite projective 

geometry `PG(k-1, q)`. The equivalence of codes translates to the 

natural action of `P\Gamma L(k,q)`. Therefore, we may interpret the 

group as a subgroup of `P\Gamma L(k,q)` as well. 

  

EXAMPLES:: 

  

sage: from sage.coding.codecan.autgroup_can_label import LinearCodeAutGroupCanLabel 

sage: C = codes.HammingCode(GF(4, 'a'), 3).dual_code() 

sage: LinearCodeAutGroupCanLabel(C).get_PGammaL_order() == GL(3, GF(4, 'a')).order()*2/3 

True 

""" 

return self._PGammaL_autom_size