Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

r""" 

Guruswami-Sudan decoder for (Generalized) Reed-Solomon codes 

 

REFERENCES: 

 

- [GS1999]_ 

 

- [Nie2013]_ 

 

AUTHORS: 

 

- Johan S. R. Nielsen, original implementation (see [Nie]_ for details) 

- David Lucas, ported the original implementation in Sage 

""" 

 

#***************************************************************************** 

# Copyright (C) 2015 David Lucas <david.lucas@inria.fr> 

# 2015 Johan S. R. Nielsen <jsrn@jsrn.dk> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.coding.grs import GeneralizedReedSolomonCode 

from sage.modules.free_module_element import vector 

from sage.rings.integer_ring import ZZ 

from sage.coding.decoder import Decoder 

from sage.coding.guruswami_sudan.interpolation import gs_interpolation_linalg, gs_interpolation_lee_osullivan 

from sage.coding.guruswami_sudan.utils import (johnson_radius, 

gilt, 

solve_degree2_to_integer_range) 

from sage.functions.other import binomial, floor, sqrt 

 

def n_k_params(C, n_k): 

r""" 

Internal helper function for the GRSGuruswamiSudanDecoder class for allowing to 

specify either a GRS code `C` or the length and dimensions `n, k` directly, 

in all the static functions. 

 

If neither `C` or `n,k` were specified to those functions, an appropriate 

error should be raised. Otherwise, `n, k` of the code or the supplied tuple 

directly is returned. 

 

INPUT: 

 

- ``C`` -- A GRS code or `None` 

 

- ``n_k`` -- A tuple `(n,k)` being length and dimension of a GRS code, or `None`. 

 

OUTPUT: 

 

- ``n_k`` -- A tuple `(n,k)` being length and dimension of a GRS code. 

 

EXAMPLES:: 

 

sage: from sage.coding.guruswami_sudan.gs_decoder import n_k_params 

sage: n_k_params(None, (10, 5)) 

(10, 5) 

sage: C = codes.GeneralizedReedSolomonCode(GF(11).list()[:10], 5) 

sage: n_k_params(C,None) 

(10, 5) 

sage: n_k_params(None,None) 

Traceback (most recent call last): 

... 

ValueError: Please provide either the code or its length and dimension 

sage: n_k_params(C,(12, 2)) 

Traceback (most recent call last): 

... 

ValueError: Please provide only the code or its length and dimension 

""" 

if C is not None and n_k is not None: 

raise ValueError("Please provide only the code or its length and dimension") 

elif C is None and n_k is None: 

raise ValueError("Please provide either the code or its length and dimension") 

elif C is not None: 

return C.length(), C.dimension() 

elif n_k is not None and not isinstance(n_k, tuple): 

raise ValueError("n_k has to be a tuple") 

elif n_k is not None: 

return n_k 

 

def roth_ruckenstein_root_finder(p, maxd=None, precision=None): 

""" 

Wrapper for Roth-Ruckenstein algorithm to compute the roots of a polynomial 

with coefficients in ``F[x]``. 

 

TESTS:: 

 

sage: from sage.coding.guruswami_sudan.gs_decoder import roth_ruckenstein_root_finder 

sage: R.<x> = GF(13)[] 

sage: S.<y> = R[] 

sage: p = (y - x^2 - x - 1) * (y + x + 1) 

sage: roth_ruckenstein_root_finder(p, maxd = 2) 

[12*x + 12, x^2 + x + 1] 

""" 

gens = p.parent().gens() 

if len(gens) == 2: 

p = p.polynomial(gens[1]) 

return p.roots(multiplicities=False, degree_bound=maxd, algorithm="Roth-Ruckenstein") 

 

def alekhnovich_root_finder(p, maxd=None, precision=None): 

""" 

Wrapper for Alekhnovich's algorithm to compute the roots of a polynomial 

with coefficients in ``F[x]``. 

 

TESTS:: 

 

sage: from sage.coding.guruswami_sudan.gs_decoder import alekhnovich_root_finder 

sage: R.<x> = GF(13)[] 

sage: S.<y> = R[] 

sage: p = (y - x^2 - x - 1) * (y + x + 1) 

sage: alekhnovich_root_finder(p, maxd = 2) 

[12*x + 12, x^2 + x + 1] 

""" 

gens = p.parent().gens() 

if len(gens) == 2: 

p = p.polynomial(gens[1]) 

return p.roots(multiplicities=False, degree_bound=maxd, algorithm="Alekhnovich") 

 

class GRSGuruswamiSudanDecoder(Decoder): 

r""" 

The Guruswami-Sudan list-decoding algorithm for decoding Generalized 

Reed-Solomon codes. 

 

The Guruswami-Sudan algorithm is a polynomial time algorithm to decode 

beyond half the minimum distance of the code. It can decode up to the 

Johnson radius which is `n - \sqrt(n(n-d))`, where `n, d` is the length, 

respectively minimum distance of the RS code. See [GS1999]_ for more details. 

It is a list-decoder meaning that it returns a list of all closest codewords 

or their corresponding message polynomials. Note that the output of the 

``decode_to_code`` and ``decode_to_message`` methods are therefore lists. 

 

The algorithm has two free parameters, the list size and the multiplicity, 

and these determine how many errors the method will correct: generally, 

higher decoding radius requires larger values of these parameters. To decode 

all the way to the Johnson radius, one generally needs values in the order 

of `O(n^2)`, while decoding just one error less requires just `O(n)`. 

 

This class has static methods for computing choices of parameters given the 

decoding radius or vice versa. 

 

The Guruswami-Sudan consists of two computationally intensive steps: 

Interpolation and Root finding, either of which can be completed in multiple 

ways. This implementation allows choosing the sub-algorithms among currently 

implemented possibilities, or supplying your own. 

 

INPUT: 

 

- ``code`` -- A code associated to this decoder. 

 

- ``tau`` -- (default: ``None``) an integer, the number of errors one wants the 

Guruswami-Sudan algorithm to correct. 

 

- ``parameters`` -- (default: ``None``) a pair of integers, where: 

- the first integer is the multiplicity parameter, and 

- the second integer is the list size parameter. 

 

- ``interpolation_alg`` -- (default: ``None``) the interpolation algorithm 

that will be used. The following possibilities are currently available: 

 

* ``"LinearAlgebra"`` -- uses a linear system solver. 

* ``"LeeOSullivan"`` -- uses Lee O'Sullivan method based on row reduction of a matrix 

* ``None`` -- one of the above will be chosen based on the size of the 

code and the parameters. 

 

You can also supply your own function to perform the interpolation. See 

NOTE section for details on the signature of this function. 

 

- ``root_finder`` -- (default: ``None``) the rootfinding algorithm that will 

be used. The following possibilities are currently available: 

 

* ``"Alekhnovich"`` -- uses Alekhnovich's algorithm. 

 

* ``"RothRuckenstein"`` -- uses Roth-Ruckenstein algorithm. 

 

* ``None`` -- one of the above will be chosen based on the size of the 

code and the parameters. 

 

You can also supply your own function to perform the interpolation. See 

NOTE section for details on the signature of this function. 

 

.. NOTE:: 

 

One has to provide either ``tau`` or ``parameters``. If neither are given, 

an exception will be raised. 

 

If one provides a function as ``root_finder``, its signature has to be: 

``my_rootfinder(Q, maxd=default_value, precision=default_value)``. `Q` 

will be given as an element of `F[x][y]`. The function must return the 

roots as a list of polynomials over a univariate polynomial ring. See 

:meth:`roth_ruckenstein_root_finder` for an example. 

 

If one provides a function as ``interpolation_alg``, its signature has 

to be: ``my_inter(interpolation_points, tau, s_and_l, wy)``. See 

:meth:`sage.coding.guruswami_sudan.interpolation.gs_interpolation_linalg` 

for an example. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C, tau = 97) 

sage: D 

Guruswami-Sudan decoder for [250, 70, 181] Reed-Solomon Code over GF(251) decoding 97 errors with parameters (1, 2) 

 

One can specify multiplicity and list size instead of ``tau``:: 

 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C, parameters = (1,2)) 

sage: D 

Guruswami-Sudan decoder for [250, 70, 181] Reed-Solomon Code over GF(251) decoding 97 errors with parameters (1, 2) 

 

One can pass a method as ``root_finder`` (works also for ``interpolation_alg``):: 

 

sage: from sage.coding.guruswami_sudan.gs_decoder import roth_ruckenstein_root_finder 

sage: rf = roth_ruckenstein_root_finder 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C, parameters = (1,2), root_finder = rf) 

sage: D 

Guruswami-Sudan decoder for [250, 70, 181] Reed-Solomon Code over GF(251) decoding 97 errors with parameters (1, 2) 

 

If one wants to use the native Sage algorithms for the root finding step, 

one can directly pass the string given in the ``Input`` block of this class. 

This works for ``interpolation_alg`` as well:: 

 

 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C, parameters = (1,2), root_finder="RothRuckenstein") 

sage: D 

Guruswami-Sudan decoder for [250, 70, 181] Reed-Solomon Code over GF(251) decoding 97 errors with parameters (1, 2) 

 

Actually, we can construct the decoder from ``C`` directly:: 

 

sage: D = C.decoder("GuruswamiSudan", tau = 97) 

sage: D 

Guruswami-Sudan decoder for [250, 70, 181] Reed-Solomon Code over GF(251) decoding 97 errors with parameters (1, 2) 

""" 

 

####################### static methods ############################### 

 

@staticmethod 

def parameters_given_tau(tau, C = None, n_k = None): 

r""" 

Returns the smallest possible multiplicity and list size given the 

given parameters of the code and decoding radius. 

 

INPUT: 

 

- ``tau`` -- an integer, number of errors one wants the Guruswami-Sudan 

algorithm to correct 

- ``C`` -- (default: ``None``) a :class:`GeneralizedReedSolomonCode` 

- ``n_k`` -- (default: ``None``) a pair of integers, respectively the 

length and the dimension of the :class:`GeneralizedReedSolomonCode` 

 

OUTPUT: 

 

- ``(s, l)`` -- a pair of integers, where: 

- ``s`` is the multiplicity parameter, and 

- ``l`` is the list size parameter. 

 

.. NOTE:: 

 

One should to provide either ``C`` or ``(n, k)``. If neither or both 

are given, an exception will be raised. 

 

EXAMPLES:: 

 

sage: tau, n, k = 97, 250, 70 

sage: codes.decoders.GRSGuruswamiSudanDecoder.parameters_given_tau(tau, n_k = (n, k)) 

(1, 2) 

 

Another example with a bigger decoding radius:: 

 

sage: tau, n, k = 118, 250, 70 

sage: codes.decoders.GRSGuruswamiSudanDecoder.parameters_given_tau(tau, n_k = (n, k)) 

(47, 89) 

 

Choosing a decoding radius which is too large results in an errors:: 

 

sage: tau = 200 

sage: codes.decoders.GRSGuruswamiSudanDecoder.parameters_given_tau(tau, n_k = (n, k)) 

Traceback (most recent call last): 

... 

ValueError: The decoding radius must be less than the Johnson radius (which is 118.66) 

""" 

n,k = n_k_params(C, n_k) 

 

johnson = johnson_radius(n, n - k + 1) 

if tau >= johnson: 

raise ValueError("The decoding radius must be less than the Johnson radius (which is %.2f)" 

% float(johnson)) 

 

# We start with l=1 and check if a satisfiable s can be chosen. We keep 

# increasing l by 1 until this is the case. The governing equation is 

# s*(s+1)/2 * n < (l+1)*s*(n-tau) - l*(l+1)/2*(k-1) 

# See [GS1999]_ 

def try_l(l): 

(mins,maxs) = solve_degree2_to_integer_range(n, n-2*(l+1)*(n-tau), (k-1)*l*(l+1)) 

if maxs > 0 and maxs >= mins: 

return max(1, mins) 

else: 

return None 

s, l = None, 0 

while s is None: 

l += 1 

s = try_l(l) 

 

return (s, l) 

 

@staticmethod 

def guruswami_sudan_decoding_radius(C = None, n_k = None, l = None, s = None): 

r""" 

Returns the maximal decoding radius of the Guruswami-Sudan decoder and 

the parameter choices needed for this. 

 

If ``s`` is set but ``l`` is not it will return the best decoding radius using this ``s`` 

alongside with the required ``l``. Vice versa for ``l``. If both are 

set, it returns the decoding radius given this parameter choice. 

 

INPUT: 

 

- ``C`` -- (default: ``None``) a :class:`GeneralizedReedSolomonCode` 

- ``n_k`` -- (default: ``None``) a pair of integers, respectively the 

length and the dimension of the :class:`GeneralizedReedSolomonCode` 

- ``s`` -- (default: ``None``) an integer, the multiplicity parameter of Guruswami-Sudan algorithm 

- ``l`` -- (default: ``None``) an integer, the list size parameter 

 

.. NOTE:: 

 

One has to provide either ``C`` or ``n_k``. If none or both are 

given, an exception will be raised. 

 

OUTPUT: 

 

- ``(tau, (s, l))`` -- where 

- ``tau`` is the obtained decoding radius, and 

- ``s, ell`` are the multiplicity parameter, respectively list size 

parameter giving this radius. 

 

EXAMPLES:: 

 

sage: n, k = 250, 70 

sage: codes.decoders.GRSGuruswamiSudanDecoder.guruswami_sudan_decoding_radius(n_k = (n, k)) 

(118, (47, 89)) 

 

One parameter can be restricted at a time:: 

 

sage: n, k = 250, 70 

sage: codes.decoders.GRSGuruswamiSudanDecoder.guruswami_sudan_decoding_radius(n_k = (n, k), s=3) 

(109, (3, 5)) 

sage: codes.decoders.GRSGuruswamiSudanDecoder.guruswami_sudan_decoding_radius(n_k = (n, k), l=7) 

(111, (4, 7)) 

 

The function can also just compute the decoding radius given the parameters:: 

 

sage: codes.decoders.GRSGuruswamiSudanDecoder.guruswami_sudan_decoding_radius(n_k = (n, k), s=2, l=6) 

(92, (2, 6)) 

""" 

n,k = n_k_params(C, n_k) 

def get_tau(s,l): 

"Return the decoding radius given this s and l" 

if s<=0 or l<=0: 

return -1 

return gilt(n - n/2*(s+1)/(l+1) - (k-1)/2*l/s) 

if l is None and s is None: 

tau = gilt(johnson_radius(n, n - k + 1)) 

return (tau, GRSGuruswamiSudanDecoder.parameters_given_tau(tau, n_k = (n, k))) 

if l is not None and s is not None: 

return (get_tau(s,l), (s,l)) 

 

# Either s or l is set, but not both. First a shared local function 

def find_integral_max(real_max, f): 

"""Given a real (local) maximum of a function `f`, return that of 

the integers around `real_max` which gives the (local) integral 

maximum, and the value of at that point.""" 

if real_max in ZZ: 

int_max = Integer(real_max) 

return (int_max, f(int_max)) 

else: 

x_f = floor(real_max) 

x_c = x_f + 1 

f_f, f_c = f(x_f), f(x_c) 

return (x_f, f_f) if f_f >= f_c else (x_c, f_c) 

 

if s is not None: 

# maximising tau under condition 

# n*(s+1 choose 2) < (ell+1)*s*(n-tau) - (ell+1 choose 2)*(k-1) 

# knowing n and s, we can just minimise 

# ( n*(s+1 choose 2) + (ell+1 choose 2)*(k-1) )/(ell+1) 

# Differentiating and setting to zero yields ell best choice: 

lmax = sqrt(n*s*(s+1.)/(k-1.)) - 1. 

#the best integral value will be 

(l,tau) = find_integral_max(lmax, lambda l: get_tau(s,l)) 

#Note that we have not proven that this ell is minimal in integral 

#sense! It just seems that this most often happens 

return (tau,(s,l)) 

if l is not None: 

# Acquired similarly to when restricting s 

smax = sqrt((k-1.)/n*l*(l+1.)) 

(s,tau) = find_integral_max(smax, lambda s: get_tau(s,l)) 

return (tau, (s,l)) 

 

@staticmethod 

def _suitable_parameters_given_tau(tau, C = None, n_k = None): 

r""" 

Return quite good multiplicity and list size parameters for the code 

parameters and the decoding radius. 

 

These parameters are not guaranteed to be the best ones possible 

for the provided ``tau``, but arise from easily-evaluated closed 

expressions and are very good approximations of the best ones. 

 

See [Nie2013]_ pages 53-54, proposition 3.11 for details. 

 

INPUT: 

 

- ``tau`` -- an integer, number of errors one wants the Guruswami-Sudan 

algorithm to correct 

- ``C`` -- (default: ``None``) a :class:`GeneralizedReedSolomonCode` 

- ``n_k`` -- (default: ``None``) a pair of integers, respectively the 

length and the dimension of the :class:`GeneralizedReedSolomonCode` 

 

OUTPUT: 

 

- ``(s, l)`` -- a pair of integers, where: 

- ``s`` is the multiplicity parameter, and 

- ``l`` is the list size parameter. 

 

.. NOTE:: 

 

One has to provide either ``C`` or ``(n, k)``. If neither or both 

are given, an exception will be raised. 

 

EXAMPLES: 

 

 

The following is an example where the parameters are optimal:: 

 

sage: tau = 98 

sage: n, k = 250, 70 

sage: codes.decoders.GRSGuruswamiSudanDecoder._suitable_parameters_given_tau(tau, n_k = (n, k)) 

(2, 3) 

sage: codes.decoders.GRSGuruswamiSudanDecoder.parameters_given_tau(tau, n_k = (n, k)) 

(2, 3) 

 

This is an example where they are not:: 

 

sage: tau = 97 

sage: n, k = 250, 70 

sage: codes.decoders.GRSGuruswamiSudanDecoder._suitable_parameters_given_tau(tau, n_k = (n, k)) 

(2, 3) 

sage: codes.decoders.GRSGuruswamiSudanDecoder.parameters_given_tau(tau, n_k = (n, k)) 

(1, 2) 

 

We can provide a GRS code instead of `n` and `k` directly:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: codes.decoders.GRSGuruswamiSudanDecoder._suitable_parameters_given_tau(tau, C = C) 

(2, 3) 

 

Another one with a bigger ``tau``:: 

 

sage: codes.decoders.GRSGuruswamiSudanDecoder._suitable_parameters_given_tau(118, C = C) 

(47, 89) 

""" 

n,k = n_k_params(C, n_k) 

w = k - 1 

atau = n - tau 

smin = tau * w / (atau ** 2 - n * w) 

s = floor(1 + smin) 

D = (s - smin) * (atau ** 2 - n * w) * s + (w**2) /4 

l = floor(atau / w * s + 0.5 - sqrt(D)/w) 

return (s, l) 

 

@staticmethod 

def gs_satisfactory(tau, s, l, C = None, n_k = None): 

r""" 

Returns whether input parameters satisfy the governing equation of 

Guruswami-Sudan. 

 

See [Nie2013]_ page 49, definition 3.3 and proposition 3.4 for details. 

 

INPUT: 

 

- ``tau`` -- an integer, number of errors one expects Guruswami-Sudan algorithm 

to correct 

- ``s`` -- an integer, multiplicity parameter of Guruswami-Sudan algorithm 

- ``l`` -- an integer, list size parameter 

- ``C`` -- (default: ``None``) a :class:`GeneralizedReedSolomonCode` 

- ``n_k`` -- (default: ``None``) a tuple of integers, respectively the 

length and the dimension of the :class:`GeneralizedReedSolomonCode` 

 

.. NOTE:: 

 

One has to provide either ``C`` or ``(n, k)``. If none or both are 

given, an exception will be raised. 

 

EXAMPLES:: 

 

sage: tau, s, l = 97, 1, 2 

sage: n, k = 250, 70 

sage: codes.decoders.GRSGuruswamiSudanDecoder.gs_satisfactory(tau, s, l, n_k = (n, k)) 

True 

 

One can also pass a GRS code:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: codes.decoders.GRSGuruswamiSudanDecoder.gs_satisfactory(tau, s, l, C = C) 

True 

 

Another example where ``s`` and ``l`` does not satisfy the equation:: 

 

sage: tau, s, l = 118, 47, 80 

sage: codes.decoders.GRSGuruswamiSudanDecoder.gs_satisfactory(tau, s, l, n_k = (n, k)) 

False 

 

If one provides both ``C`` and ``n_k`` an exception is returned:: 

 

sage: tau, s, l = 97, 1, 2 

sage: n, k = 250, 70 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: codes.decoders.GRSGuruswamiSudanDecoder.gs_satisfactory(tau, s, l, C = C, n_k = (n, k)) 

Traceback (most recent call last): 

... 

ValueError: Please provide only the code or its length and dimension 

 

Same if one provides none of these:: 

 

sage: codes.decoders.GRSGuruswamiSudanDecoder.gs_satisfactory(tau, s, l) 

Traceback (most recent call last): 

... 

ValueError: Please provide either the code or its length and dimension 

""" 

n,k = n_k_params(C, n_k) 

return l > 0 and s > 0 and n * s * (s+1) < (l+1) * (2*s*(n-tau) - (k-1) * l) 

 

 

 

####################### decoder itself ############################### 

def __init__(self, code, tau = None, parameters = None, interpolation_alg = None, root_finder = None): 

r""" 

TESTS: 

 

If neither ``tau`` nor ``parameters`` is given, an exception is returned:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C) 

Traceback (most recent call last): 

... 

ValueError: Specify either tau or parameters 

 

If one provides something else than one of the allowed strings or a method as ``interpolation_alg``, 

an exception is returned:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C, tau = 97, interpolation_alg = 42) 

Traceback (most recent call last): 

... 

ValueError: Please provide a method or one of the allowed strings for interpolation_alg 

 

Same thing for ``root_finder``:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C, tau = 97, root_finder = "FortyTwo") 

Traceback (most recent call last): 

... 

ValueError: Please provide a method or one of the allowed strings for root_finder 

 

If one provides a full set of parameters (tau, s and l) which are not satisfactory, an 

error message is returned:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C, tau = 142, parameters=(1, 2)) 

Traceback (most recent call last): 

... 

ValueError: Impossible parameters for the Guruswami-Sudan algorithm 

 

If ``code`` is not a GRS code, an error is raised:: 

 

sage: C = codes.random_linear_code(GF(11), 10, 4) 

sage: codes.decoders.GRSGuruswamiSudanDecoder(C, tau = 2) 

Traceback (most recent call last): 

... 

ValueError: code has to be a generalized Reed-Solomon code 

""" 

if not isinstance(code, GeneralizedReedSolomonCode): 

raise ValueError("code has to be a generalized Reed-Solomon code") 

n, k = code.length(), code.dimension() 

if tau and parameters: 

if not GRSGuruswamiSudanDecoder.gs_satisfactory(tau, parameters[0], parameters[1], C = code): 

raise ValueError("Impossible parameters for the Guruswami-Sudan algorithm") 

self._tau, self._s, self._ell = tau, parameters[0], parameters[1] 

elif tau: 

self._tau = tau 

self._s, self._ell = GRSGuruswamiSudanDecoder.parameters_given_tau(tau, n_k = (n, k)) 

elif parameters: 

self._s = parameters[0] 

self._ell = parameters[1] 

(self._tau,_) = GRSGuruswamiSudanDecoder.guruswami_sudan_decoding_radius(C = code, s=self._s, l=self._ell) 

else: 

raise ValueError("Specify either tau or parameters") 

if hasattr(interpolation_alg, '__call__'): 

self._interpolation_alg = interpolation_alg 

elif interpolation_alg is None or interpolation_alg == "LeeOSullivan": 

self._interpolation_alg = gs_interpolation_lee_osullivan 

elif interpolation_alg == "LinearAlgebra": 

self._interpolation_alg = gs_interpolation_linalg 

else: 

raise ValueError("Please provide a method or one of the allowed strings for interpolation_alg") 

if hasattr(root_finder, '__call__'): 

self._root_finder = root_finder 

elif root_finder == "RothRuckenstein": 

self._root_finder = roth_ruckenstein_root_finder 

elif root_finder is None or root_finder == "Alekhnovich": 

self._root_finder = alekhnovich_root_finder 

else: 

raise ValueError("Please provide a method or one of the allowed strings for root_finder") 

super(GRSGuruswamiSudanDecoder, self).__init__(code, code.ambient_space(), "EvaluationPolynomial") 

 

def _repr_(self): 

r""" 

Returns a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = C.decoder("GuruswamiSudan", tau = 97) 

sage: D 

Guruswami-Sudan decoder for [250, 70, 181] Reed-Solomon Code over GF(251) decoding 97 errors with parameters (1, 2) 

""" 

return "Guruswami-Sudan decoder for %s decoding %s errors with parameters %s" % (self.code(), self.decoding_radius(), (self.multiplicity(), self.list_size())) 

 

def _latex_(self): 

r""" 

Returns a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = C.decoder("GuruswamiSudan", tau = 97) 

sage: latex(D) 

\textnormal{Guruswami-Sudan decoder for } [250, 70, 181] \textnormal{ Reed-Solomon Code over } \Bold{F}_{251}\textnormal{ decoding }97\textnormal{ errors with parameters }(1, 2) 

""" 

return "\\textnormal{Guruswami-Sudan decoder for } %s\\textnormal{ decoding }%s\\textnormal{ errors with parameters }%s" % (self.code()._latex_(), self.decoding_radius(), (self.multiplicity(), self.list_size())) 

 

def __eq__(self, other): 

r""" 

Tests equality between GRSGuruswamiSudanDecoder objects. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D1 = C.decoder("GuruswamiSudan", tau = 97) 

sage: D2 = C.decoder("GuruswamiSudan", tau = 97) 

sage: D1.__eq__(D2) 

True 

""" 

return isinstance(other, GRSGuruswamiSudanDecoder)\ 

and self.code() == other.code()\ 

and self.decoding_radius() == other.decoding_radius()\ 

and self.multiplicity() == other.multiplicity()\ 

and self.list_size() == other.list_size()\ 

and self.interpolation_algorithm() == other.interpolation_algorithm()\ 

and self.rootfinding_algorithm() == other.rootfinding_algorithm() 

 

def interpolation_algorithm(self): 

r""" 

Returns the interpolation algorithm that will be used. 

 

Remember that its signature has to be: 

``my_inter(interpolation_points, tau, s_and_l, wy)``. 

See :meth:`sage.coding.guruswami_sudan.interpolation.gs_interpolation_linalg` 

for an example. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = C.decoder("GuruswamiSudan", tau = 97) 

sage: D.interpolation_algorithm() 

<function gs_interpolation_lee_osullivan at 0x...> 

""" 

return self._interpolation_alg 

 

def rootfinding_algorithm(self): 

r""" 

Returns the rootfinding algorithm that will be used. 

 

Remember that its signature has to be: 

``my_rootfinder(Q, maxd=default_value, precision=default_value)``. 

See :meth:`roth_ruckenstein_root_finder` 

for an example. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = C.decoder("GuruswamiSudan", tau = 97) 

sage: D.rootfinding_algorithm() 

<function alekhnovich_root_finder at 0x...> 

""" 

return self._root_finder 

 

def parameters(self): 

r""" 

Returns the multiplicity and list size parameters of ``self``. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = C.decoder("GuruswamiSudan", tau = 97) 

sage: D.parameters() 

(1, 2) 

""" 

return (self._s, self._ell) 

 

 

def multiplicity(self): 

r""" 

Returns the multiplicity parameter of ``self``. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = C.decoder("GuruswamiSudan", tau = 97) 

sage: D.multiplicity() 

1 

""" 

return self._s 

 

def list_size(self): 

r""" 

Returns the list size parameter of ``self``. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = C.decoder("GuruswamiSudan", tau = 97) 

sage: D.list_size() 

2 

""" 

return self._ell 

 

def decode_to_message(self, r): 

r""" 

Decodes ``r`` to the list of polynomials whose encoding by 

:meth:`self.code()` is within Hamming distance 

:meth:`self.decoding_radius` of ``r``. 

 

INPUT: 

 

- ``r`` -- a received word, i.e. a vector in `F^n` where `F` and `n` are 

the base field respectively length of :meth:`self.code`. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(17).list()[:15], 6) 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C, tau=5) 

sage: F.<x> = GF(17)[] 

sage: m = 13*x^4 + 7*x^3 + 10*x^2 + 14*x + 3 

sage: c = D.connected_encoder().encode(m) 

sage: r = vector(GF(17), [3,13,12,0,0,7,5,1,8,11,15,12,14,7,10]) 

sage: (c-r).hamming_weight() 

5 

sage: messages = D.decode_to_message(r) 

sage: len(messages) 

2 

sage: m in messages 

True 

 

TESTS: 

 

If one has provided a method as a ``root_finder`` or a ``interpolation_alg`` which 

does not fit the allowed signature, an exception will be raised:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(17).list()[:15], 6) 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C, tau=5, root_finder=next_prime) 

sage: F.<x> = GF(17)[] 

sage: m = 9*x^5 + 10*x^4 + 9*x^3 + 7*x^2 + 15*x + 2 

sage: c = D.connected_encoder().encode(m) 

sage: r = vector(GF(17), [3,1,4,2,14,1,0,4,13,12,1,16,1,13,15]) 

sage: m in D.decode_to_message(r) 

Traceback (most recent call last): 

... 

ValueError: The provided root-finding algorithm has a wrong signature. See the documentation of `codes.decoders.GRSGuruswamiSudanDecoder.rootfinding_algorithm()` for details 

""" 

return [self.connected_encoder().unencode(c) for c in self.decode_to_code(r)] 

 

def decode_to_code(self, r): 

r""" 

Return the list of all codeword within radius :meth:`self.decoding_radius` of the received word `r`. 

 

INPUT: 

 

- ``r`` -- a received word, i.e. a vector in `F^n` where `F` and `n` are 

the base field respectively length of :meth:`self.code`. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(17).list()[:15], 6) 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C, tau=5) 

sage: c = vector(GF(17), [3,13,12,0,0,7,5,1,8,11,1,9,4,12,14]) 

sage: c in C 

True 

sage: r = vector(GF(17), [3,13,12,0,0,7,5,1,8,11,15,12,14,7,10]) 

sage: r in C 

False 

sage: codewords = D.decode_to_code(r) 

sage: len(codewords) 

2 

sage: c in codewords 

True 

 

TESTS: 

 

Check that :trac:`21347` is fixed:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(13).list()[:10], 3) 

sage: D = codes.decoders.GRSGuruswamiSudanDecoder(C, tau = 4) 

sage: c = vector(GF(13), [6, 8, 2, 1, 5, 1, 2, 8, 6, 9]) 

sage: e = vector(GF(13), [1, 0, 0, 1, 1, 0, 0, 1, 0, 1]) 

sage: D.decode_to_code(c+e) 

[] 

""" 

C = self.code() 

n, k, d, alphas, colmults, s, l = C.length(), C.dimension(), C.minimum_distance(),\ 

C.evaluation_points(), C.column_multipliers(), self.multiplicity(), self.list_size() 

tau = self.decoding_radius() 

## SETUP INTERPOLATION PROBLEM 

wy = k-1 

points = [(alphas[i], r[i]/colmults[i]) for i in range(0,len(alphas))] 

## SOLVE INTERPOLATION 

try: 

Q = self.interpolation_algorithm()(points, tau, (s,l), wy) 

except TypeError: 

raise ValueError("The provided interpolation algorithm has a wrong signature. See the documentation of `codes.decoders.GRSGuruswamiSudanDecoder.interpolation_algorithm()` for details") 

## EXAMINE THE FACTORS AND CONVERT TO CODEWORDS 

try: 

polynomials = self.rootfinding_algorithm()(Q, maxd = wy) 

except TypeError: 

raise ValueError("The provided root-finding algorithm has a wrong signature. See the documentation of `codes.decoders.GRSGuruswamiSudanDecoder.rootfinding_algorithm()` for details") 

if not polynomials: 

return [] 

 

E = self.connected_encoder() 

codewords = [ E.encode(f) for f in polynomials] 

# Root-finding might find spurious roots. Return only the ones which give nearby codewords 

return [ c for c in codewords if (r - c).hamming_weight() <= tau ] 

 

def decoding_radius(self): 

r""" 

Returns the maximal number of errors that ``self`` is able to correct. 

 

EXAMPLES:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = C.decoder("GuruswamiSudan", tau = 97) 

sage: D.decoding_radius() 

97 

 

An example where tau is not one of the inputs to the constructor:: 

 

sage: C = codes.GeneralizedReedSolomonCode(GF(251).list()[:250], 70) 

sage: D = C.decoder("GuruswamiSudan", parameters = (2,4)) 

sage: D.decoding_radius() 

105 

""" 

return self._tau 

 

 

####################### types ############################### 

 

GeneralizedReedSolomonCode._registered_decoders["GuruswamiSudan"] = GRSGuruswamiSudanDecoder 

GRSGuruswamiSudanDecoder._decoder_type = {"list-decoder", "always-succeed", "hard-decision"}