Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

r""" 

Relative finite field extensions 

 

Considering a *absolute field* `F_{q^m}` and a *relative_field* `F_q`, with 

`q = p^s`, `p` being a prime and `s, m` being integers, this file 

contains a class to take care of the representation of `F_{q^m}`-elements 

as `F_q`-elements. 

 

.. WARNING:: 

 

As this code is experimental, a warning is thrown when a 

relative finite field extension is created for the first time 

in a session (see :class:`sage.misc.superseded.experimental`). 

 

TESTS:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: RelativeFiniteFieldExtension(Fqm, Fq) 

doctest:...: FutureWarning: This class/method/function is marked as experimental. It, its functionality or its interface might change without a formal deprecation. 

See http://trac.sagemath.org/20284 for details. 

Relative field extension between Finite Field in aa of size 2^4 and Finite Field in a of size 2^2 

""" 

 

#***************************************************************************** 

# Copyright (C) 2016 David Lucas <david.lucas@inria.fr> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.misc.cachefunc import cached_method 

from sage.rings.integer import Integer 

from sage.rings.finite_rings.finite_field_constructor import GF 

from sage.structure.sage_object import SageObject 

from sage.categories.homset import Hom 

from sage.matrix.constructor import column_matrix 

from sage.modules.free_module_element import vector 

from sage.misc.superseded import experimental 

 

class RelativeFiniteFieldExtension(SageObject): 

r""" 

Considering `p` a prime number, n an integer and three finite fields 

`F_p`, `F_q` and `F_{q^m}`, this class contains a set of methods 

to manage the representation of elements of the relative extension 

`F_{q^m}` over `F_q`. 

 

INPUT: 

 

- ``absolute_field``, ``relative_field`` -- two finite fields, ``relative_field`` 

being a subfield of ``absolute_field`` 

 

- ``embedding`` -- (default: ``None``) an homomorphism from ``relative_field`` to 

``absolute_field``. If ``None`` is provided, it will default to the first 

homomorphism of the list of homomorphisms Sage can build. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: RelativeFiniteFieldExtension(Fqm, Fq) 

Relative field extension between Finite Field in aa of size 2^4 and Finite Field in a of size 2^2 

 

It is possible to specify the embedding to use 

from ``relative_field`` to ``absolute_field``:: 

 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq, embedding=Hom(Fq, Fqm)[1]) 

sage: FE.embedding() == Hom(Fq, Fqm)[1] 

True 

""" 

 

@experimental(trac_number=20284) 

def __init__(self, absolute_field, relative_field, embedding=None): 

r""" 

TESTS: 

 

If ``absolute_field`` is not a finite field, an error is raised:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm = RR 

sage: Fq.<a> = GF(4) 

sage: RelativeFiniteFieldExtension(Fqm, Fq) 

Traceback (most recent call last): 

... 

ValueError: absolute_field has to be a finite field 

 

Same for ``relative_field``:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq = RR 

sage: RelativeFiniteFieldExtension(Fqm, Fq) 

Traceback (most recent call last): 

... 

ValueError: relative_field has to be a finite field 

 

If ``relative_field`` is not a subfield of ``absolute_field``, an exception 

is raised:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(8) 

sage: RelativeFiniteFieldExtension(Fqm, Fq) 

Traceback (most recent call last): 

... 

ValueError: relative_field has to be a subfield of absolute_field 

""" 

if not absolute_field.is_finite(): 

raise ValueError("absolute_field has to be a finite field") 

if not relative_field.is_finite(): 

raise ValueError("relative_field has to be a finite field") 

s = relative_field.degree() 

sm = absolute_field.degree() 

if not s.divides(sm): 

raise ValueError("relative_field has to be a subfield of absolute_field") 

H = Hom(relative_field, absolute_field) 

if embedding is not None and not embedding in H: 

raise ValueError("embedding has to be an embedding from relative_field to absolute_field") 

elif embedding is not None: 

self._phi = embedding 

else: 

self._phi = H[0] 

self._prime_field = relative_field.base_ring() 

self._relative_field = relative_field 

self._absolute_field = absolute_field 

alpha = relative_field.gen() 

beta = absolute_field.gen() 

self._alphas = [alpha ** i for i in range(s)] 

self._betas = [beta ** i for i in range(sm)] 

self._relative_field_degree = s 

self._absolute_field_degree = sm 

 

def _repr_(self): 

r""" 

Returns a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: RelativeFiniteFieldExtension(Fqm, Fq) 

Relative field extension between Finite Field in aa of size 2^4 and Finite Field in a of size 2^2 

""" 

return "Relative field extension between %s and %s" % (self.absolute_field(), self.relative_field()) 

 

def _latex_(self): 

r""" 

Returns a latex representation of ``self``. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: latex(RelativeFiniteFieldExtension(Fqm, Fq)) 

\textnormal{Relative field extension between \Bold{F}_{2^{4}} and \Bold{F}_{2^{2}}} 

""" 

return "\\textnormal{Relative field extension between %s and %s}" % (self.absolute_field()._latex_(), 

self.relative_field()._latex_()) 

 

def __eq__(self, other): 

r""" 

Tests equality between embeddings. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fq = GF(4) 

sage: FQ = GF(4**3) 

sage: H = Hom(Fq, FQ) 

sage: E1 = RelativeFiniteFieldExtension(FQ, Fq) 

sage: E2 = RelativeFiniteFieldExtension(FQ, Fq, H[0]) 

sage: E3 = RelativeFiniteFieldExtension(FQ, Fq, H[1]) 

sage: E1 == E2 

True 

sage: E1 == E3 

False 

""" 

return isinstance(other, RelativeFiniteFieldExtension) \ 

and self.embedding() == other.embedding() 

 

@cached_method 

def _representation_matrix(self): 

r""" 

Returns the matrix used to represents elements of the absolute field 

as vectors in the basis of the relative field over the prime field. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: FE._representation_matrix() 

[1 0 0 0] 

[0 0 1 1] 

[0 1 1 1] 

[0 0 0 1] 

""" 

s = self.relative_field_degree() 

m = self.extension_degree() 

betas = self.absolute_field_basis() 

phi_alphas = [ self._phi(self._alphas[i]) for i in range(s) ] 

A = column_matrix([vector(betas[i] * phi_alphas[j]) 

for i in range(m) for j in range(s)]) 

return A.inverse() 

 

def _flattened_relative_field_representation(self, b): 

r""" 

Returns a vector representation of ``b`` in the basis of 

the relative field over the prime field. 

 

INPUT: 

 

- ``b`` -- an element of the absolute field 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: b = aa^3 + aa^2 + aa + 1 

sage: FE._flattened_relative_field_representation(b) 

(1, 0, 1, 1) 

""" 

if not b in self.absolute_field(): 

raise ValueError("The input has to be an element of the absolute field") 

return self._representation_matrix() * vector(b) 

 

def relative_field_representation(self, b): 

r""" 

Returns a vector representation of the field element ``b`` in the basis 

of the absolute field over the relative field. 

 

INPUT: 

 

- ``b`` -- an element of the absolute field 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: b = aa^3 + aa^2 + aa + 1 

sage: FE.relative_field_representation(b) 

(1, a + 1) 

""" 

if not b in self.absolute_field(): 

raise ValueError("The input has to be an element of the absolute field") 

s = self.relative_field_degree() 

if s == 1: 

return vector(b) 

else: 

Fq = self.relative_field() 

vect = self._flattened_relative_field_representation(b) 

sm = self.absolute_field_degree() 

list_elts = [] 

for i in range(0, sm, s): 

list_elts.append(Fq(vect[i:i+s])) 

return vector(Fq, list_elts) 

 

def absolute_field_representation(self, a): 

r""" 

Returns an absolute field representation of the relative field 

vector ``a``. 

 

INPUT: 

 

- ``a`` -- a vector in the relative extension field 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: b = aa^3 + aa^2 + aa + 1 

sage: rel = FE.relative_field_representation(b) 

sage: FE.absolute_field_representation(rel) == b 

True 

""" 

s = self.relative_field_degree() 

m = self.extension_degree() 

if len(a) != m: 

raise ValueError("The input has to be a vector with length equal to the order of the absolute field") 

if not a.base_ring() == self.relative_field(): 

raise ValueError("The input has to be over the prime field") 

alphas = self.relative_field_basis() 

betas = self.absolute_field_basis() 

phi = self.embedding() 

b = self.absolute_field().zero() 

F = self.prime_field() 

flattened_relative_field_rep_list = [] 

for i in a: 

tmp = vector(i).list() 

for j in tmp: 

flattened_relative_field_rep_list.append(j) 

 

flattened_relative_field_rep = vector(flattened_relative_field_rep_list) 

for i in range(m): 

b += betas[i] * phi(sum([flattened_relative_field_rep[j] * alphas[j%s] for j in range(i*s, i*s + s)])) 

return b 

 

def is_in_relative_field(self, b): 

r""" 

Returns ``True`` if ``b`` is in the relative field. 

 

INPUT: 

 

- ``b`` -- an element of the absolute field. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: FE.is_in_relative_field(aa^2 + aa) 

True 

sage: FE.is_in_relative_field(aa^3) 

False 

""" 

vect = self.relative_field_representation(b) 

return vect[1:vect.length()].is_zero() 

 

def cast_into_relative_field(self, b, check=True): 

r""" 

Casts an absolute field element into the relative field (if possible). 

This is the inverse function of the field embedding. 

 

INPUT: 

 

- ``b`` -- an element of the absolute field which also lies in the 

relative field. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: phi = FE.embedding() 

sage: b = aa^2 + aa 

sage: FE.is_in_relative_field(b) 

True 

sage: FE.cast_into_relative_field(b) 

a 

sage: phi(FE.cast_into_relative_field(b)) == b 

True 

""" 

if check: 

if not self.is_in_relative_field(b): 

raise ValueError("%s does not belong to the relative field" % b) 

return self.relative_field_representation(b)[0] 

 

def embedding(self): 

r""" 

Returns the embedding which is used to go from the 

relative field to the absolute field. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: FE.embedding() 

Ring morphism: 

From: Finite Field in a of size 2^2 

To: Finite Field in aa of size 2^4 

Defn: a |--> aa^2 + aa 

""" 

return self._phi 

 

def relative_field_basis(self): 

r""" 

Returns a basis of the relative field over the prime field. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: FE.relative_field_basis() 

[1, a] 

""" 

return self._alphas 

 

def absolute_field_basis(self): 

r""" 

Returns a basis of the absolute field over the prime field. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: FE.absolute_field_basis() 

[1, aa, aa^2, aa^3] 

""" 

return self._betas 

 

def relative_field_degree(self): 

r""" 

Let `F_p` be the base field of our relative field `F_q`. 

Returns `s` where `p^s = q` 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: FE.relative_field_degree() 

2 

""" 

return self._relative_field_degree 

 

def absolute_field_degree(self): 

r""" 

Let `F_p` be the base field of our absolute field `F_{q^m}`. 

Returns `sm` where `p^{sm} = q^{m}` 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: FE.absolute_field_degree() 

4 

""" 

return self._absolute_field_degree 

 

 

def extension_degree(self): 

r""" 

Return `m`, the extension degree of the absiolute field over 

the relative field. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(64) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: FE.extension_degree() 

3 

""" 

return self.absolute_field_degree() // self.relative_field_degree() 

 

def prime_field(self): 

r""" 

Returns the base field of our absolute and relative fields. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: FE.prime_field() 

Finite Field of size 2 

""" 

return self._prime_field 

 

def relative_field(self): 

r""" 

Returns the relative field of ``self``. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: FE.relative_field() 

Finite Field in a of size 2^2 

""" 

return self._relative_field 

 

def absolute_field(self): 

r""" 

Returns the absolute field of ``self``. 

 

EXAMPLES:: 

 

sage: from sage.coding.relative_finite_field_extension import * 

sage: Fqm.<aa> = GF(16) 

sage: Fq.<a> = GF(4) 

sage: FE = RelativeFiniteFieldExtension(Fqm, Fq) 

sage: FE.absolute_field() 

Finite Field in aa of size 2^4 

""" 

return self._absolute_field