Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

r""" 

An introduction to crystals 

=========================== 

 

Informally, a crystal `\mathcal{B}` is an oriented graph with edges 

colored in some set `I` such that, for each `i\in I`, each node `x` 

has: 

 

- at most one `i`-successor, denoted `f_i x`; 

 

- at most one `i`-predecessor, denoted `e_i x`. 

 

By convention, one writes `f_i x=\emptyset` and `e_i x=\emptyset` when 

`x` has no successor resp. predecessor. 

 

One may think of `\mathcal{B}` as essentially a deterministic 

automaton whose dual is also deterministic; in this context, the 

`f_i`'s and `e_i`'s are respectively the transition functions of the 

automaton and of its dual, and `\emptyset` is the sink. 

 

A crystal comes further endowed with a weight function 

`\operatorname{wt} : \mathcal{B} \to L` which satisfies 

appropriate conditions. 

 

In combinatorial representation theory, crystals are used as 

combinatorial data to model representations of Lie algebra. 

 

Axiomatic definition 

-------------------- 

 

Let `C` be a Cartan type (:class:`CartanType`) with index set `I`, 

and `L` be a realization of the weight lattice of the type `C`. 

Let `\alpha_i` and `\alpha^{\vee}_i` denote the simple roots and 

coroots respectively. 

 

A type `C` crystal is a non-empty set `\mathcal{B}` endowed with maps 

`\operatorname{wt} : \mathcal{B} \to L`, 

`e_i, f_i : \mathcal{B} \to \mathcal{B} \cup \{\emptyset\}`, and 

`\varepsilon_i, \varphi_i : \mathcal{B} \to \ZZ \cup \{-\infty\}` 

for `i \in I` satisfying the following properties for all `i \in I`: 

 

- for `b, b^{\prime} \in \mathcal{B}`, we have 

`f_i b^{\prime} = b` if and only if `e_i b = b^{\prime}`; 

 

- if `e_i b \in \mathcal{B}`, then: 

 

* `\operatorname{wt}(e_i b) = \operatorname{wt}(b) + \alpha_i`, 

* `\varepsilon_i(e_i b) = \varepsilon_i(b) - 1`, 

* `\varphi_i(e_i b) = \varphi_i(b) + 1`; 

 

- if `f_i b \in \mathcal{B}`, then: 

 

* `\operatorname{wt}(f_i b) = \operatorname{wt}(b) - \alpha_i`, 

* `\varepsilon_i(f_i b) = \varepsilon_i(b) + 1`, 

* `\varphi_i(f_i b) = \varphi_i(b) - 1`; 

 

- `\varphi_i(b) = \varepsilon_i(b) + \langle \alpha^{\vee}_i, 

\operatorname{wt}(b) \rangle`, 

 

- if `\varphi_i(b) = -\infty` for `b \in \mathcal{B}`, 

then `e_i b = f_i b = \emptyset`. 

 

Some further conditions are required to guarantee that this data 

indeed models a representation of a Lie algebra. For finite simply 

laced types a complete characterization is given by Stembridge's local 

axioms [St2003]_. 

 

REFERENCES: 

 

.. [St2003] \J. Stembridge, *A local characterization of simply-laced crystals*, 

Trans. Amer. Math. Soc. 355 (2003), no. 12, 4807-4823. 

 

EXAMPLES: 

 

We construct the type `A_5` crystal on letters (or in representation 

theoretic terms, the highest weight crystal of type `A_5` 

corresponding to the highest weight `\Lambda_1`):: 

 

sage: C = crystals.Letters(['A',5]); C 

The crystal of letters for type ['A', 5] 

 

It has a single highest weight element:: 

 

sage: C.highest_weight_vectors() 

(1,) 

 

A crystal is an enumerated set (see :class:`EnumeratedSets`); and we 

can count and list its elements in the usual way:: 

 

sage: C.cardinality() 

6 

sage: C.list() 

[1, 2, 3, 4, 5, 6] 

 

as well as use it in for loops:: 

 

sage: [x for x in C] 

[1, 2, 3, 4, 5, 6] 

 

Here are some more elaborate crystals (see their respective 

documentations):: 

 

sage: Tens = crystals.TensorProduct(C, C) 

sage: Spin = crystals.Spins(['B', 3]) 

sage: Tab = crystals.Tableaux(['A', 3], shape = [2,1,1]) 

sage: Fast = crystals.FastRankTwo(['B', 2], shape = [3/2, 1/2]) 

sage: KR = crystals.KirillovReshetikhin(['A',2,1],1,1) 

 

One can get (currently) crude plotting via:: 

 

sage: Tab.plot() 

Graphics object consisting of 52 graphics primitives 

 

If dot2tex is installed, one can obtain nice latex pictures via:: 

 

sage: K = crystals.KirillovReshetikhin(['A',3,1], 1,1) 

sage: view(K, pdflatex=True) # optional - dot2tex graphviz, not tested (opens external window) 

 

or with colored edges:: 

 

sage: K = crystals.KirillovReshetikhin(['A',3,1], 1,1) 

sage: G = K.digraph() 

sage: G.set_latex_options(color_by_label={0:"black", 1:"red", 2:"blue", 3:"green"}) 

sage: view(G, pdflatex=True) # optional - dot2tex graphviz, not tested (opens external window) 

 

For rank two crystals, there is an alternative method of getting 

metapost pictures. For more information see ``C.metapost?``. 

 

.. SEEALSO:: :ref:`The overview of crystal features in Sage<sage.combinat.crystals>` 

 

.. TODO:: 

 

- Vocabulary and conventions: 

 

- For a classical crystal: connected / highest weight / 

irreducible 

 

- ... 

 

- Layout instructions for plot() for rank 2 types 

 

- RestrictionOfCrystal 

 

 

The crystals library in Sage grew up from an initial implementation in 

MuPAD-Combinat (see <MuPAD-Combinat>/lib/COMBINAT/crystals.mu). 

""" 

 

#***************************************************************************** 

# Copyright (C) 2007 Anne Schilling <anne at math.ucdavis.edu> 

# Nicolas Thiery <nthiery at users.sf.net> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#**************************************************************************** 

# Acknowledgment: most of the design and implementation of this 

# library is heavily inspired from MuPAD-Combinat. 

#**************************************************************************** 

 

#from sage.structure.unique_representation import UniqueRepresentation 

#from sage.structure.parent import Parent 

#from sage.structure.element import Element 

#from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets 

#from sage.graphs.all import DiGraph 

#from sage.combinat import ranker 

#from sage.combinat.root_system.weyl_characters import WeylCharacter 

from sage.combinat.backtrack import GenericBacktracker 

 

class CrystalBacktracker(GenericBacktracker): 

def __init__(self, crystal, index_set=None): 

r""" 

Time complexity: `O(nF)` amortized for each produced 

element, where `n` is the size of the index set, and `F` is 

the cost of computing `e` and `f` operators. 

 

Memory complexity: `O(D)` where `D` is the depth of the crystal. 

 

Principle of the algorithm: 

 

Let `C` be a classical crystal. It's an acyclic graph where each 

connected component has a unique element without predecessors (the 

highest weight element for this component). Let's assume for 

simplicity that `C` is irreducible (i.e. connected) with highest 

weight element `u`. 

 

One can define a natural spanning tree of `C` by taking 

`u` as the root of the tree, and for any other element 

`y` taking as ancestor the element `x` such that 

there is an `i`-arrow from `x` to `y` with 

`i` minimal. Then, a path from `u` to `y` 

describes the lexicographically smallest sequence 

`i_1,\dots,i_k` such that 

`(f_{i_k} \circ f_{i_1})(u)=y`. 

 

Morally, the iterator implemented below just does a depth first 

search walk through this spanning tree. In practice, this can be 

achieved recursively as follows: take an element `x`, and 

consider in turn each successor `y = f_i(x)`, ignoring 

those such that `y = f_j(x^{\prime})` for some `x^{\prime}` and 

`j<i` (this can be tested by computing `e_j(y)` 

for `j<i`). 

 

EXAMPLES:: 

 

sage: from sage.combinat.crystals.crystals import CrystalBacktracker 

sage: C = crystals.Tableaux(['B',3],shape=[3,2,1]) 

sage: CB = CrystalBacktracker(C) 

sage: len(list(CB)) 

1617 

sage: CB = CrystalBacktracker(C, [1,2]) 

sage: len(list(CB)) 

8 

""" 

GenericBacktracker.__init__(self, None, None) 

self._crystal = crystal 

if index_set is None: 

self._index_set = crystal.index_set() 

else: 

self._index_set = index_set 

 

def _rec(self, x, state): 

""" 

Return an iterator for the (immediate) children of ``x`` in the search 

tree. 

 

EXAMPLES:: 

 

sage: from sage.combinat.crystals.crystals import CrystalBacktracker 

sage: C = crystals.Letters(['A', 5]) 

sage: CB = CrystalBacktracker(C) 

sage: list(CB._rec(C(1), 'n/a')) 

[(2, 'n/a', True)] 

""" 

#We will signal the initial case by having a object and state 

#of None and consider it separately. 

if x is None and state is None: 

for gen in self._crystal.highest_weight_vectors(): 

yield gen, "n/a", True 

return 

 

# Run through the children y of x 

for i in self._index_set: 

y = x.f(i) 

if y is None: 

continue 

# Ignore those which can be reached by an arrow with smaller label 

hasParent = False 

for j in self._index_set: 

if j == i: 

break 

if not y.e(j) is None: 

hasParent = True 

break 

if hasParent: 

continue 

 

# yield y and all elements further below 

yield y, "n/a", True