Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

r""" 

Kyoto Path Model for Affine Highest Weight Crystals 

""" 

 

#***************************************************************************** 

# Copyright (C) 2013 Travis Scrimshaw <tscrim at ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#**************************************************************************** 

 

from sage.structure.parent import Parent 

from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets 

from sage.categories.highest_weight_crystals import HighestWeightCrystals 

from sage.combinat.crystals.tensor_product import TensorProductOfCrystals, \ 

TensorProductOfRegularCrystalsElement 

 

 

class KyotoPathModel(TensorProductOfCrystals): 

r""" 

The Kyoto path model for an affine highest weight crystal. 

 

.. NOTE:: 

 

Here we are using anti-Kashiwara notation and might differ from 

some of the literature. 

 

Consider a Kac--Moody algebra `\mathfrak{g}` of affine Cartan type `X`, 

and we want to model the `U_q'(\mathfrak{g})`-crystal `B(\lambda)`. 

First we consider the set of fundamental weights `\{\Lambda_i\}_{i \in I}` 

of `\mathfrak{g}` and let `\{\overline{\Lambda}_i\}_{i \in I_0}` be the 

corresponding fundamental weights of the corresponding classical Lie 

algebra `\mathfrak{g}_0`. To model `B(\lambda)`, we start with a sequence 

of perfect `U_q'(\mathfrak{g})`-crystals `(B^{(i)})_i` of level 

`l` such that 

 

.. MATH:: 

 

\lambda \in \overline{P}_l^+ = \left\{ \mu \in \overline{P}^+ \mid 

\langle c, \mu \rangle = l \right\} 

 

where `c` is the canonical central element of `U_q'(\mathfrak{g})` 

and `\overline{P}^+` is the nonnegative weight lattice spanned by 

`\{ \overline{\Lambda}_i \mid i \in I \}`. 

 

Next we consider the crystal isomorphism `\Phi_0 : B(\lambda_0) \to B^{(0)} 

\otimes B(\lambda_1)` defined by `u_{\lambda_0} \mapsto b^{(0)}_{\lambda_0} 

\otimes u_{\lambda_1}` where `b^{(0)}_{\lambda_0}` is the unique element in 

`B^{(0)}` such that `\varphi\left( b^{(0)}_{\lambda_0} \right) = \lambda_0` 

and `\lambda_1 = \varepsilon\left( b^{(0)}_{\lambda_0} \right)` and 

`u_{\mu}` is the highest weight element in `B(\mu)`. Iterating this, we 

obtain the following isomorphism: 

 

.. MATH:: 

 

\Phi_n : B(\lambda) \to B^{(0)} \otimes B^{(1)} \otimes \cdots 

\otimes B^{(N)} \otimes B(\lambda_{N+1}). 

 

We note by Lemma 10.6.2 in [HK02]_ that for any `b \in B(\lambda)` there 

exists a finite `N` such that 

 

.. MATH:: 

 

\Phi_N(b) = \left( \bigotimes_{k=0}^{N-1} b^{(k)} \right) 

\otimes u_{\lambda_N}. 

 

Therefore we can model elements `b \in B(\lambda)` as a 

`U_q'(\mathfrak{g})`-crystal by considering an infinite list of 

elements `b^{(k)} \in B^{(k)}` and defining the crystal structure by: 

 

.. MATH:: 

 

\begin{aligned} 

\overline{\mathrm{wt}}(b) & = \lambda_N + \sum_{k=0}^{N-1} 

\overline{\mathrm{wt}}\left( b^{(k)} \right) 

\\ e_i(b) & = e_i\left( b^{\prime} \otimes b^{(N)} \right) \otimes 

u_{\lambda_N}, 

\\ f_i(b) & = f_i\left( b^{\prime} \otimes b^{(N)} \right) \otimes 

u_{\lambda_N}, 

\\ \varepsilon_i(b) & = \max\left( \varepsilon_i(b^{\prime}) - 

\varphi_i\left( b^{(N)} \right), 0 \right), 

\\ \varphi_i(b) & = \varphi_i(b^{\prime}) + \max\left( 

\varphi_i\left( b^{(N)} \right) - \varepsilon_i(b^{\prime}), 0 \right), 

\end{aligned} 

 

where `b^{\prime} = b^{(0)} \otimes \cdots \otimes b^{(N-1)}`. To 

translate this into a finite list, we consider a finite sequence 

`b^{(0)} \otimes \cdots \otimes b^{(N-1)} \otimes b^{(N)}_{\lambda_N}` 

and if 

 

.. MATH:: 

 

f_i\left( b^{(0)} \otimes \cdots b^{(N-1)} \otimes 

b^{(N)}_{\lambda_N} \right) = b_0 \otimes \cdots \otimes b^{(N-1)} 

\otimes f_i\left( b^{(N)}_{\lambda_N} \right), 

 

then we take the image as `b^{(0)} \otimes \cdots \otimes f_i\left( 

b^{(N)}_{\lambda_N}\right) \otimes b^{(N+1)}_{\lambda_{N+1}}`. Similarly 

we remove `b^{(N)}_{\lambda_{N}}` if we have `b_0 \otimes \cdots 

\otimes b^{(N-1)} \otimes b^{(N-1)}_{\lambda_{N-1}} \otimes 

b^{(N)}_{\lambda_N}`. Additionally if 

 

.. MATH:: 

 

e_i\left( b^{(0)} \otimes \cdots \otimes b^{(N-1)} \otimes 

b^{(N)}_{\lambda_N} \right) = b^{(0)} \otimes \cdots \otimes 

b^{(N-1)} \otimes e_i\left( b^{(N)}_{\lambda_N} \right), 

 

then we consider this to be `0`. 

 

We can then lift the `U_q'(\mathfrak{g})`-crystal structure to a 

`U_q(\mathfrak{g})`-crystal structure by using a tensor product of 

the :class:`affinization 

<sage.combinat.crystals.affinization.AffinizationOfCrystal>` of the 

of crystals `B^{(i)}` for all `i`. 

 

REFERENCES: 

 

.. [HK02] *Introduction to Quantum Groups and Crystal Bases.* 

Jin Hong and Seok-Jin Kang. 2002. Volume 42. 

Graduate Studies in Mathematics. American Mathematical Society. 

 

INPUT: 

 

- ``B`` -- a single or list of `U_q^{\prime}` perfect crystal(s) of 

level `l` 

- ``weight`` -- a weight in `\overline{P}_l^+` 

 

EXAMPLES:: 

 

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: mg = C.module_generators[0]; mg 

[[[3]]] 

sage: mg.f_string([0,1,2,2]) 

[[[3]], [[3]], [[1]]] 

sage: x = mg.f_string([0,1,2]); x 

[[[2]], [[3]], [[1]]] 

sage: x.weight() 

Lambda[0] 

 

An example of type `A_5^{(2)}`:: 

 

sage: B = crystals.KirillovReshetikhin(['A',5,2], 1,1) 

sage: La = RootSystem(['A',5,2]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: mg = C.module_generators[0]; mg 

[[[-1]]] 

sage: mg.f_string([0,2,1,3]) 

[[[-3]], [[2]], [[-1]]] 

sage: mg.f_string([0,2,3,1]) 

[[[-3]], [[2]], [[-1]]] 

 

An example of type `D_3^{(2)}`:: 

 

sage: B = crystals.KirillovReshetikhin(['D',3,2], 1,1) 

sage: La = RootSystem(['D',3,2]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: mg = C.module_generators[0]; mg 

[[]] 

sage: mg.f_string([0,1,2,0]) 

[[[0]], [[1]], []] 

 

An example using multiple crystals of the same level:: 

 

sage: B1 = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: B2 = crystals.KirillovReshetikhin(['A',2,1], 2,1) 

sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel([B1, B2, B1], La[0]) 

sage: mg = C.module_generators[0]; mg 

[[[3]]] 

sage: mg.f_string([0,1,2,2]) 

[[[3]], [[1], [3]], [[3]]] 

sage: mg.f_string([0,1,2,2,2]) 

sage: mg.f_string([0,1,2,2,1,0]) 

[[[3]], [[2], [3]], [[1]], [[2]]] 

sage: mg.f_string([0,1,2,2,1,0,0,2]) 

[[[3]], [[1], [2]], [[1]], [[3]], [[1], [3]]] 

 

By using the extended weight lattice, the Kyoto path model lifts 

the perfect crystals to their affinizations:: 

 

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: P = RootSystem(['A',2,1]).weight_lattice(extended=True) 

sage: La = P.fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: mg = C.module_generators[0]; mg 

[[[3]](0)] 

sage: x = mg.f_string([0,1,2]); x 

[[[2]](-1), [[3]](0), [[1]](0)] 

sage: x.weight() 

Lambda[0] - delta 

""" 

@staticmethod 

def __classcall_private__(cls, crystals, weight, P=None): 

""" 

Normalize input to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: P = RootSystem(['A',2,1]).weight_lattice() 

sage: La = P.fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: C2 = crystals.KyotoPathModel((B,), La[0]) 

sage: C3 = crystals.KyotoPathModel([B], La[0], P) 

sage: C is C2 and C2 is C3 

True 

""" 

if isinstance(crystals, list): 

crystals = tuple(crystals) 

elif not isinstance(crystals, tuple): 

crystals = (crystals,) 

 

if any(not B.is_perfect() for B in crystals): 

raise ValueError("all crystals must be perfect") 

level = crystals[0].level() 

if any(B.level() != level for B in crystals[1:]): 

raise ValueError("all crystals must have the same level") 

ct = crystals[0].cartan_type() 

if P is None: 

P = weight.parent() 

if sum( ct.dual().c()[i] * weight.scalar(h) for i,h in 

enumerate(P.simple_coroots()) ) != level: 

raise ValueError( "{} is not a level {} weight".format(weight, level) ) 

 

return super(KyotoPathModel, cls).__classcall__(cls, crystals, weight, P) 

 

def __init__(self, crystals, weight, P): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: TestSuite(C).run() # long time 

""" 

Parent.__init__(self, category=(HighestWeightCrystals(), InfiniteEnumeratedSets())) 

 

self._cartan_type = crystals[0].cartan_type() 

self._weight = weight 

if weight.parent().is_extended(): 

# public for TensorProductOfCrystals 

self.crystals = tuple([C.affinization() for C in crystals]) 

self._epsilon_dicts = [{b.Epsilon(): self.crystals[i](b, 0) for b in B} 

for i,B in enumerate(crystals)] 

self._phi_dicts = [{b.Phi(): self.crystals[i](b, 0) for b in B} 

for i,B in enumerate(crystals)] 

else: 

# public for TensorProductOfCrystals 

self.crystals = tuple(crystals) 

self._epsilon_dicts = [{b.Epsilon(): b for b in B} 

for B in crystals] 

self._phi_dicts = [{b.Phi(): b for b in B} 

for B in crystals] 

self.module_generators = (self.element_class(self, [self._phi_dicts[0][weight]]),) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() 

sage: crystals.KyotoPathModel(B, La[0]) 

Kyoto path realization of B(Lambda[0]) using 

[Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(1,1)] 

""" 

return "Kyoto path realization of B({}) using {}".format(self._weight, list(self.crystals)) 

 

def finite_tensor_product(self, k): 

""" 

Return the finite tensor product of crystals of length ``k`` 

from truncating ``self``. 

 

EXAMPLES:: 

 

sage: B1 = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: B2 = crystals.KirillovReshetikhin(['A',2,1], 2,1) 

sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel([B1,B2,B1], La[0]) 

sage: C.finite_tensor_product(5) 

Full tensor product of the crystals 

[Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(1,1), 

Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(2,1), 

Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(1,1), 

Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(1,1), 

Kirillov-Reshetikhin crystal of type ['A', 2, 1] with (r,s)=(2,1)] 

""" 

N = len(self.crystals) 

crystals = [self.crystals[i % N] for i in range(k)] 

return TensorProductOfCrystals(*crystals) 

 

def weight_lattice_realization(self): 

""" 

Return the weight lattice realization used to express weights. 

 

EXAMPLES:: 

 

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: C.weight_lattice_realization() 

Weight lattice of the Root system of type ['A', 2, 1] 

 

sage: P = RootSystem(['A',2,1]).weight_lattice(extended=True) 

sage: C = crystals.KyotoPathModel(B, P.fundamental_weight(0)) 

sage: C.weight_lattice_realization() 

Extended weight lattice of the Root system of type ['A', 2, 1] 

""" 

return self._weight.parent() 

 

class Element(TensorProductOfRegularCrystalsElement): 

""" 

An element in the Kyoto path model. 

""" 

# For simplicity (and safety), we use the regular crystals implementation 

def epsilon(self, i): 

r""" 

Return `\varepsilon_i` of ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: mg = C.module_generators[0] 

sage: [mg.epsilon(i) for i in C.index_set()] 

[0, 0, 0] 

sage: elt = mg.f(0) 

sage: [elt.epsilon(i) for i in C.index_set()] 

[1, 0, 0] 

sage: elt = mg.f_string([0,1,2]) 

sage: [elt.epsilon(i) for i in C.index_set()] 

[0, 0, 1] 

sage: elt = mg.f_string([0,1,2,2]) 

sage: [elt.epsilon(i) for i in C.index_set()] 

[0, 0, 2] 

""" 

x = self.e(i) 

eps = 0 

while x is not None: 

x = x.e(i) 

eps = eps + 1 

return eps 

 

def phi(self, i): 

r""" 

Return `\varphi_i` of ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: mg = C.module_generators[0] 

sage: [mg.phi(i) for i in C.index_set()] 

[1, 0, 0] 

sage: elt = mg.f(0) 

sage: [elt.phi(i) for i in C.index_set()] 

[0, 1, 1] 

sage: elt = mg.f_string([0,1]) 

sage: [elt.phi(i) for i in C.index_set()] 

[0, 0, 2] 

""" 

x = self.f(i) 

phi = 0 

while x is not None: 

x = x.f(i) 

phi = phi + 1 

return phi 

 

def e(self, i): 

""" 

Return the action of `e_i` on ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: mg = C.module_generators[0] 

sage: all(mg.e(i) is None for i in C.index_set()) 

True 

sage: mg.f(0).e(0) == mg 

True 

""" 

k = self.position_of_first_unmatched_plus(i) 

if k is None: 

return None 

if k == len(self)-1: 

return None 

crystal = self[k].e(i) 

if k == len(self)-2 and crystal.Epsilon() == self[-1].Phi(): 

l = self[:-1] 

l[-1] = crystal 

return self.__class__(self.parent(), l) 

return self._set_index(k, crystal) 

 

def f(self, i): 

""" 

Return the action of `f_i` on ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: mg = C.module_generators[0] 

sage: mg.f(2) 

sage: mg.f(0) 

[[[1]], [[2]]] 

sage: mg.f_string([0,1,2]) 

[[[2]], [[3]], [[1]]] 

""" 

k = self.position_of_last_unmatched_minus(i) 

if k is None: 

return None 

if k == len(self)-1: 

l = list(self) 

k = len(l) % len(self.parent().crystals) 

l.append(self.parent()._phi_dicts[k][ l[-1].Epsilon() ]) 

l[-2] = l[-2].f(i) 

return self.__class__(self.parent(), l) 

return self._set_index(k, self[k].f(i)) 

 

def weight(self): 

""" 

Return the weight of ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: P = RootSystem(['A',2,1]).weight_lattice(extended=True) 

sage: La = P.fundamental_weights() 

sage: C = crystals.KyotoPathModel(B, La[0]) 

sage: mg = C.module_generators[0] 

sage: mg.weight() 

Lambda[0] 

sage: mg.f_string([0,1,2]).weight() 

Lambda[0] - delta 

""" 

wt = TensorProductOfRegularCrystalsElement.weight(self) 

return wt + self[-1].Epsilon() 

 

def truncate(self, k=None): 

r""" 

Truncate ``self`` to have length ``k`` and return as an element 

in a (finite) tensor product of crystals. 

 

INPUT: 

 

- ``k`` -- (optional) the length to truncate to; if not specified, 

then returns one more than the current non-ground-state elements 

(i.e. the current list in ``self``) 

 

EXAMPLES:: 

 

sage: B1 = crystals.KirillovReshetikhin(['A',2,1], 1,1) 

sage: B2 = crystals.KirillovReshetikhin(['A',2,1], 2,1) 

sage: La = RootSystem(['A',2,1]).weight_lattice().fundamental_weights() 

sage: C = crystals.KyotoPathModel([B1,B2,B1], La[0]) 

sage: mg = C.highest_weight_vector() 

sage: elt = mg.f_string([0,1,2,2,1,0]); elt 

[[[3]], [[2], [3]], [[1]], [[2]]] 

sage: t = elt.truncate(); t 

[[[3]], [[2], [3]], [[1]], [[2]]] 

sage: t.parent() is C.finite_tensor_product(4) 

True 

sage: elt.truncate(2) 

[[[3]], [[2], [3]]] 

sage: elt.truncate(10) 

[[[3]], [[2], [3]], [[1]], [[2]], [[1], [3]], 

[[2]], [[1]], [[2], [3]], [[1]], [[3]]] 

""" 

if k is None: 

k = len(self) 

 

P = self.parent().finite_tensor_product(k) 

if k <= len(self): 

l = self[:k] 

else: 

l = list(self) 

N = len(self.parent().crystals) 

while len(l) < k: 

i = len(l) % N 

l.append(self.parent()._phi_dicts[i][ l[-1].Epsilon() ]) 

return P(*l)