Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

r""" 

Polyhedral Realization of `B(\infty)` 

""" 

 

#***************************************************************************** 

# Copyright (C) 2015 Travis Scrimshaw <tscrim at ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#**************************************************************************** 

 

from sage.structure.parent import Parent 

from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets 

from sage.categories.highest_weight_crystals import HighestWeightCrystals 

from sage.combinat.crystals.tensor_product import TensorProductOfCrystals, \ 

TensorProductOfCrystalsElement 

from sage.combinat.crystals.elementary_crystals import ElementaryCrystal 

from sage.combinat.root_system.cartan_type import CartanType 

 

class InfinityCrystalAsPolyhedralRealization(TensorProductOfCrystals): 

r""" 

The polyhedral realization of `B(\infty)`. 

 

.. NOTE:: 

 

Here we are using anti-Kashiwara notation and might differ from 

some of the literature. 

 

Consider a Kac-Moody algebra `\mathfrak{g}` of Cartan type `X` with 

index set `I`, and consider a finite sequence `J = (j_1, j_2, \ldots, j_m)` 

whose support equals `I`. We extend this to an infinite sequence 

by taking `\bar{J} = J \cdot J \cdot J \cdots`, where `\cdot` denotes 

concatenation of sequences. Let 

 

.. MATH:: 

 

B_J = B_{j_m} \otimes \cdots \otimes B_{j_2} \otimes B_{j_1}, 

 

where `B_i` is an 

:class:`~sage.combinat.crystals.elementary_crystals.ElementaryCrystal`. 

 

As given in Theorem 2.1.1 of [K93]_, there exists a strict crystal embedding 

`\Psi_i \colon B(\infty) \to B_i \otimes B(\infty)` defined by `u_{\infty} 

\mapsto b_i(0) \otimes u_{\infty}`, where `b_i(0) \in B_i` and `u_{\infty}` 

is the (unique) highest weight element in `B(\infty)`. This is sometimes 

known as the *Kashiwara embedding* [NZ97]_ (though, in [NZ97]_, the target 

of this map is denoted by `\ZZ_J^\infty`). By iterating this embedding by 

taking `\Psi_J = \Psi_{j_n} \circ \Psi_{j_{n-1}} \circ \cdots \circ 

\Psi_{j_1}`, we obtain the following strict crystal embedding: 

 

.. MATH:: 

 

\Psi_J^n \colon B(\infty) \to B_J^{\otimes n} \otimes B(\infty). 

 

We note there is a natural analog of Lemma 10.6.2 in [HK02]_ that 

for any `b \in B(\infty)`, there exists a positive integer `N` such that 

 

.. MATH:: 

 

\Psi^N_J(b) = \left( \bigotimes_{k=1}^N b^{(k)} \right) 

\otimes u_{\infty}. 

 

Therefore we can model elements `b \in B(\infty)` by considering 

an infinite list of elements `b^{(k)} \in B_J` and defining the crystal 

structure by: 

 

.. MATH:: 

 

\begin{aligned} 

\mathrm{wt}(b) & = \sum_{k=1}^N \mathrm{wt}(b^{(k)}) 

\\ e_i(b) & = e_i\left( \left( \bigotimes_{k=1}^N b^{(k)} \right) 

\right) \otimes u_{\infty}, 

\\ f_i(b) & = f_i\left( \left( \bigotimes_{k=1}^N b^{(k)} \right) 

\right) \otimes u_{\infty}, 

\\ \varepsilon_i(b) & = \max_{ e_i^k(b) \neq 0 } k, 

\\ \varphi_i(b) & = \varepsilon_i(b) - \langle \mathrm{wt}(b), 

h_i^{\vee} \rangle. 

\end{aligned} 

 

To translate this into a finite list, we consider a finite sequence 

`b_1 \otimes \cdots \otimes b_N` and if 

 

.. MATH:: 

 

f_i\left( b^{(1)} \otimes \cdots b^{(N-1)} \otimes b^{(N)} \right) 

= b^{(1)} \otimes \cdots \otimes b^{(N-1)} \otimes 

f_i\left( b^{(N)} \right), 

 

then we take the image as `b^{(1)} \otimes \cdots \otimes f_i\left( 

b^{(N)} \right) \otimes b^{(N+1)}`. Similarly we remove `b^{(N)}` if 

we have `b^{(N)} = \bigotimes_{k=1}^m b_{j_k}(0)`. Additionally if 

 

.. MATH:: 

 

e_i\left( b^{(1)} \otimes \cdots \otimes b^{(N-1)} \otimes 

b^{(N)} \right) = b^{(1)} \otimes \cdots \otimes b^{(N-1)} 

\otimes e_i\left( b^{(N)} \right), 

 

then we consider this to be `0`. 

 

REFERENCES: 

 

.. [K93] \M. Kashiwara. *The crystal base and Littelmann's refined Demazure 

character formula*. Duke Math. J. **71**. 1993. 

 

INPUT: 

 

- ``cartan_type`` -- a Cartan type 

- ``seq`` -- (default: ``None``) a finite sequence whose support 

equals the index set of the Cartan type; if ``None``, then this 

is the index set 

 

EXAMPLES:: 

 

sage: B = crystals.infinity.PolyhedralRealization(['A',2]) 

sage: mg = B.module_generators[0]; mg 

[0, 0] 

sage: mg.f_string([2,1,2,2]) 

[0, -3, -1, 0, 0, 0] 

 

An example of type `B_2`:: 

 

sage: B = crystals.infinity.PolyhedralRealization(['B',2]) 

sage: mg = B.module_generators[0]; mg 

[0, 0] 

sage: mg.f_string([2,1,2,2]) 

[0, -2, -1, -1, 0, 0] 

 

An example of type `G_2`:: 

 

sage: B = crystals.infinity.PolyhedralRealization(['G',2]) 

sage: mg = B.module_generators[0]; mg 

[0, 0] 

sage: mg.f_string([2,1,2,2]) 

[0, -3, -1, 0, 0, 0] 

""" 

@staticmethod 

def __classcall_private__(cls, cartan_type, seq=None): 

""" 

Normalize input to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: B1 = crystals.infinity.PolyhedralRealization(['A',2]) 

sage: B2 = crystals.infinity.PolyhedralRealization(['A',2], [1,2]) 

sage: B1 is B2 

True 

""" 

cartan_type = CartanType(cartan_type) 

if seq is None: 

seq = cartan_type.index_set() 

else: 

seq = tuple(seq) 

if set(seq) != set(cartan_type.index_set()): 

raise ValueError("the support of seq is not the index set") 

return super(InfinityCrystalAsPolyhedralRealization, cls).__classcall__(cls, cartan_type, seq) 

 

def __init__(self, cartan_type, seq): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.infinity.PolyhedralRealization(['A',2]) 

sage: TestSuite(B).run() # long time 

""" 

cat = (HighestWeightCrystals(), InfiniteEnumeratedSets()) 

Parent.__init__(self, category=cat) 

self._cartan_type = cartan_type 

self._seq = seq 

# These are the additional factors we add as necessary 

self._factors = tuple([ElementaryCrystal(cartan_type, i) for i in seq]) 

# public for TensorProductOfCrystals 

self.crystals = self._factors 

self._tp = [C.module_generators[0] for C in self.crystals] 

self.module_generators = (self.element_class(self, self._tp),) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: crystals.infinity.PolyhedralRealization(['A',2]) 

Polyhedral realization of B(oo) of type ['A', 2] using (1, 2) 

""" 

return "Polyhedral realization of B(oo) of type {} using {}".format(self._cartan_type, self._seq) 

 

def finite_tensor_product(self, k): 

""" 

Return the finite tensor product of crystals of length ``k`` 

by truncating ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.infinity.PolyhedralRealization(['A',2]) 

sage: B.finite_tensor_product(5) 

Full tensor product of the crystals 

[The 1-elementary crystal of type ['A', 2], 

The 2-elementary crystal of type ['A', 2], 

The 1-elementary crystal of type ['A', 2], 

The 2-elementary crystal of type ['A', 2], 

The 1-elementary crystal of type ['A', 2]] 

""" 

N = len(self._factors) 

crystals = [self._factors[i % N] for i in range(k)] 

return TensorProductOfCrystals(*crystals) 

 

class Element(TensorProductOfCrystalsElement): 

r""" 

An element in the polyhedral realization of `B(\infty)`. 

""" 

# For simplicity (and safety), we use the regular crystals implementation 

def epsilon(self, i): 

r""" 

Return `\varepsilon_i` of ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.infinity.PolyhedralRealization(['A',2,1]) 

sage: mg = B.module_generators[0] 

sage: [mg.epsilon(i) for i in B.index_set()] 

[0, 0, 0] 

sage: elt = mg.f(0) 

sage: [elt.epsilon(i) for i in B.index_set()] 

[1, 0, 0] 

sage: elt = mg.f_string([0,1,2]) 

sage: [elt.epsilon(i) for i in B.index_set()] 

[0, 0, 1] 

sage: elt = mg.f_string([0,1,2,2]) 

sage: [elt.epsilon(i) for i in B.index_set()] 

[0, 0, 2] 

""" 

x = self.e(i) 

eps = 0 

while x is not None: 

x = x.e(i) 

eps = eps + 1 

return eps 

 

def phi(self, i): 

r""" 

Return `\varphi_i` of ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.infinity.PolyhedralRealization(['A',2,1]) 

sage: mg = B.module_generators[0] 

sage: [mg.phi(i) for i in B.index_set()] 

[0, 0, 0] 

sage: elt = mg.f(0) 

sage: [elt.phi(i) for i in B.index_set()] 

[-1, 1, 1] 

sage: elt = mg.f_string([0,1]) 

sage: [elt.phi(i) for i in B.index_set()] 

[-1, 0, 2] 

sage: elt = mg.f_string([0,1,2,2]) 

sage: [elt.phi(i) for i in B.index_set()] 

[1, 1, 0] 

""" 

P = self.parent().weight_lattice_realization() 

h = P.simple_coroots() 

omega = P(self.weight()).scalar(h[i]) 

return self.epsilon(i) + omega 

 

def e(self, i): 

""" 

Return the action of `e_i` on ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.infinity.PolyhedralRealization(['A',2]) 

sage: mg = B.module_generators[0] 

sage: all(mg.e(i) is None for i in B.index_set()) 

True 

sage: mg.f(1).e(1) == mg 

True 

""" 

N = len(self) + 1 

pos = None 

for k in range(1, N): 

if all(self._sig(i,k) > self._sig(i,j) for j in range(1, k)) and \ 

all(self._sig(i,k) >= self._sig(i,j) for j in range(k+1, N)): 

crystal = self[-k].e(i) 

pos = k 

break 

 

nf = len(self.parent()._factors) 

if pos is None or pos <= nf: 

return None 

 

l = list(self) 

l[-pos] = crystal 

if pos <= 2*nf and all(b._m == 0 for b in l[-2*nf:-nf]): 

return self.__class__(self.parent(), l[:-nf]) 

return self.__class__(self.parent(), l) 

 

def f(self, i): 

""" 

Return the action of `f_i` on ``self``. 

 

EXAMPLES:: 

 

sage: B = crystals.infinity.PolyhedralRealization(['A',2]) 

sage: mg = B.module_generators[0] 

sage: mg.f(1) 

[-1, 0, 0, 0] 

sage: mg.f_string([1,2,2,1]) 

[-1, -2, -1, 0, 0, 0] 

""" 

N = len(self) + 1 

pos = None 

for k in range(1, N): 

if all(self._sig(i,k) >= self._sig(i,j) for j in range(1, k)) and \ 

all(self._sig(i,k) > self._sig(i,j) for j in range(k+1, N)): 

crystal = self[-k].f(i) 

pos = k 

break 

 

nf = len(self.parent()._factors) 

if pos <= nf: 

l = list(self) 

l[-pos] = l[-pos].f(i) 

return self.__class__(self.parent(), l + self.parent()._tp) 

return self._set_index(-pos, crystal) 

 

def truncate(self, k=None): 

r""" 

Truncate ``self`` to have length ``k`` and return as an element 

in a (finite) tensor product of crystals. 

 

INPUT: 

 

- ``k`` -- (optional) the length of the truncation; if not 

specified, then returns one more than the current non-ground-state 

elements (i.e. the current list in ``self``) 

 

EXAMPLES:: 

 

sage: B = crystals.infinity.PolyhedralRealization(['A',2]) 

sage: mg = B.module_generators[0] 

sage: elt = mg.f_string([1,2,2,1]); elt 

[-1, -2, -1, 0, 0, 0] 

sage: t = elt.truncate(); t 

[-1, -2, -1, 0, 0, 0] 

sage: t.parent() is B.finite_tensor_product(6) 

True 

sage: elt.truncate(2) 

[-1, -2] 

sage: elt.truncate(10) 

[-1, -2, -1, 0, 0, 0, 0, 0, 0, 0] 

""" 

if k is None: 

k = len(self) 

 

P = self.parent().finite_tensor_product(k) 

if k <= len(self): 

l = self[:k] 

else: 

l = list(self) 

N = len(self.parent()._tp) 

while len(l) < k: 

i = len(l) % N 

l.append(self.parent()._tp[i]) 

return P(*l)