Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

# -*- coding: utf-8 -*- 

""" 

Block designs 

 

A *block design* is a set together with a family of subsets (repeated subsets 

are allowed) whose members are chosen to satisfy some set of properties that are 

deemed useful for a particular application. See :wikipedia:`Block_design`. 

 

REFERENCES: 

 

.. [1] Block design from wikipedia, 

:wikipedia:`Block_design` 

 

.. [2] What is a block design?, 

http://designtheory.org/library/extrep/extrep-1.1-html/node4.html (in 'The 

External Representation of Block Designs' by Peter J. Cameron, Peter 

Dobcsanyi, John P. Morgan, Leonard H. Soicher) 

 

.. [Hu57] Daniel R. Hughes, "A class of non-Desarguesian projective planes", 

The Canadian Journal of Mathematics (1957), http://cms.math.ca/cjm/v9/p378 

 

.. [We07] Charles Weibel, "Survey of Non-Desarguesian planes" (2007), notices of 

the AMS, vol. 54 num. 10, pages 1294--1303 

 

AUTHORS: 

 

- Quentin Honoré (2015): construction of Hughes plane :trac:`18527` 

 

- Vincent Delecroix (2014): rewrite the part on projective planes :trac:`16281` 

 

- Peter Dobcsanyi and David Joyner (2007-2008) 

 

This is a significantly modified form of the module block_design.py (version 

0.6) written by Peter Dobcsanyi peter@designtheory.org. Thanks go to Robert 

Miller for lots of good design suggestions. 

 

.. TODO:: 

 

Implement more finite non-Desarguesian plane as in [We07]_ and 

:wikipedia:`Non-Desarguesian_plane`. 

 

Functions and methods 

--------------------- 

""" 

 

#***************************************************************************** 

# Copyright (C) 2007 Peter Dobcsanyi <peter@designtheory.org> 

# Copyright (C) 2007 David Joyner <wdjoyner@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

from __future__ import absolute_import 

 

from sage.modules.free_module import VectorSpace 

from sage.rings.integer import Integer 

from sage.rings.integer_ring import ZZ 

from sage.arith.all import binomial, integer_floor, is_prime_power 

from .incidence_structures import IncidenceStructure 

from sage.rings.finite_rings.finite_field_constructor import FiniteField 

from sage.categories.sets_cat import EmptySetError 

from sage.misc.unknown import Unknown 

from sage.matrix.matrix_space import MatrixSpace 

 

 

import six 

 

 

BlockDesign = IncidenceStructure 

 

### utility functions ------------------------------------------------------- 

 

def tdesign_params(t, v, k, L): 

""" 

Return the design's parameters: `(t, v, b, r , k, L)`. Note that `t` must be 

given. 

 

EXAMPLES:: 

 

sage: BD = BlockDesign(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) 

sage: from sage.combinat.designs.block_design import tdesign_params 

sage: tdesign_params(2,7,3,1) 

(2, 7, 7, 3, 3, 1) 

""" 

x = binomial(v, t) 

y = binomial(k, t) 

b = divmod(L * x, y)[0] 

x = binomial(v-1, t-1) 

y = binomial(k-1, t-1) 

r = integer_floor(L * x/y) 

return (t, v, b, r, k, L) 

 

def are_hyperplanes_in_projective_geometry_parameters(v, k, lmbda, return_parameters=False): 

r""" 

Return ``True`` if the parameters ``(v,k,lmbda)`` are the one of hyperplanes in 

a (finite Desarguesian) projective space. 

 

In other words, test whether there exists a prime power ``q`` and an integer 

``d`` greater than two such that: 

 

- `v = (q^{d+1}-1)/(q-1) = q^d + q^{d-1} + ... + 1` 

- `k = (q^d - 1)/(q-1) = q^{d-1} + q^{d-2} + ... + 1` 

- `lmbda = (q^{d-1}-1)/(q-1) = q^{d-2} + q^{d-3} + ... + 1` 

 

If it exists, such a pair ``(q,d)`` is unique. 

 

INPUT: 

 

- ``v,k,lmbda`` (integers) 

 

OUTPUT: 

 

- a boolean or, if ``return_parameters`` is set to ``True`` a pair 

``(True, (q,d))`` or ``(False, (None,None))``. 

 

EXAMPLES:: 

 

sage: from sage.combinat.designs.block_design import are_hyperplanes_in_projective_geometry_parameters 

sage: are_hyperplanes_in_projective_geometry_parameters(40,13,4) 

True 

sage: are_hyperplanes_in_projective_geometry_parameters(40,13,4,return_parameters=True) 

(True, (3, 3)) 

sage: PG = designs.ProjectiveGeometryDesign(3,2,GF(3)) 

sage: PG.is_t_design(return_parameters=True) 

(True, (2, 40, 13, 4)) 

 

sage: are_hyperplanes_in_projective_geometry_parameters(15,3,1) 

False 

sage: are_hyperplanes_in_projective_geometry_parameters(15,3,1,return_parameters=True) 

(False, (None, None)) 

 

TESTS:: 

 

sage: sgp = lambda q,d: ((q**(d+1)-1)//(q-1), (q**d-1)//(q-1), (q**(d-1)-1)//(q-1)) 

sage: for q in [3,4,5,7,8,9,11]: 

....: for d in [2,3,4,5]: 

....: v,k,l = sgp(q,d) 

....: assert are_hyperplanes_in_projective_geometry_parameters(v,k,l,True) == (True, (q,d)) 

....: assert are_hyperplanes_in_projective_geometry_parameters(v+1,k,l) is False 

....: assert are_hyperplanes_in_projective_geometry_parameters(v-1,k,l) is False 

....: assert are_hyperplanes_in_projective_geometry_parameters(v,k+1,l) is False 

....: assert are_hyperplanes_in_projective_geometry_parameters(v,k-1,l) is False 

....: assert are_hyperplanes_in_projective_geometry_parameters(v,k,l+1) is False 

....: assert are_hyperplanes_in_projective_geometry_parameters(v,k,l-1) is False 

""" 

import sage.arith.all as arith 

 

q1 = Integer(v - k) 

q2 = Integer(k - lmbda) 

 

if (lmbda <= 0 or q1 < 4 or q2 < 2 or 

not q1.is_prime_power() or 

not q2.is_prime_power()): 

return (False,(None,None)) if return_parameters else False 

 

p1,e1 = q1.factor()[0] 

p2,e2 = q2.factor()[0] 

 

k = arith.gcd(e1,e2) 

d = e1//k 

q = p1**k 

if e2//k != d-1 or lmbda != (q**(d-1)-1)//(q-1): 

return (False,(None,None)) if return_parameters else False 

 

return (True, (q,d)) if return_parameters else True 

 

def ProjectiveGeometryDesign(n, d, F, algorithm=None, point_coordinates=True, check=True): 

r""" 

Return a projective geometry design. 

 

The projective geometry design `PG_d(n,q)` has for points the lines of 

`\GF{q}^{n+1}`, and for blocks the `d+1`-dimensional subspaces of 

`\GF{q}^{n+1}`, each of which contains `\frac {|\GF{q}|^{d+1}-1} {|\GF{q}|-1}` lines. 

It is a `2`-design with parameters 

 

.. MATH:: 

 

v = \binom{n+1}{1}_q,\ k = \binom{d+1}{1}_q,\ \lambda = 

\binom{n-1}{d-1}_q 

 

where the `q`-binomial coefficient `\binom{m}{r}_q` is defined by 

 

.. MATH:: 

 

\binom{m}{r}_q = \frac{(q^m - 1)(q^{m-1} - 1) \cdots (q^{m-r+1}-1)} 

{(q^r-1)(q^{r-1}-1)\cdots (q-1)} 

 

.. SEEALSO:: 

 

:func:`AffineGeometryDesign` 

 

INPUT: 

 

- ``n`` is the projective dimension 

 

- ``d`` is the dimension of the subspaces which make up the blocks. 

 

- ``F`` -- a finite field or a prime power. 

 

- ``algorithm`` -- set to ``None`` by default, which results in using Sage's 

own implementation. In order to use GAP's implementation instead (i.e. its 

``PGPointFlatBlockDesign`` function) set ``algorithm="gap"``. Note that 

GAP's "design" package must be available in this case, and that it can be 

installed with the ``gap_packages`` spkg. 

 

- ``point_coordinates`` -- ``True`` by default. Ignored and assumed to be ``False`` if 

``algorithm="gap"``. If ``True``, the ground set is indexed by coordinates 

in `\GF{q}^{n+1}`. Otherwise the ground set is indexed by integers. 

 

- ``check`` -- (optional, default to ``True``) whether to check the output. 

 

EXAMPLES: 

 

The set of `d`-dimensional subspaces in a `n`-dimensional projective space 

forms `2`-designs (or balanced incomplete block designs):: 

 

sage: PG = designs.ProjectiveGeometryDesign(4, 2, GF(2)) 

sage: PG 

Incidence structure with 31 points and 155 blocks 

sage: PG.is_t_design(return_parameters=True) 

(True, (2, 31, 7, 7)) 

 

sage: PG = designs.ProjectiveGeometryDesign(3, 1, GF(4)) 

sage: PG.is_t_design(return_parameters=True) 

(True, (2, 85, 5, 1)) 

 

Check with ``F`` being a prime power:: 

 

sage: PG = designs.ProjectiveGeometryDesign(3, 2, 4) 

sage: PG 

Incidence structure with 85 points and 85 blocks 

 

Use coordinates:: 

 

sage: PG = designs.ProjectiveGeometryDesign(2, 1, GF(3)) 

sage: PG.blocks()[0] 

[(1, 0, 0), (1, 0, 1), (1, 0, 2), (0, 0, 1)] 

 

Use indexing by integers:: 

 

sage: PG = designs.ProjectiveGeometryDesign(2,1,GF(3),point_coordinates=0) 

sage: PG.blocks()[0] 

[0, 1, 2, 12] 

 

Check that the constructor using gap also works:: 

 

sage: BD = designs.ProjectiveGeometryDesign(2, 1, GF(2), algorithm="gap") # optional - gap_packages (design package) 

sage: BD.is_t_design(return_parameters=True) # optional - gap_packages (design package) 

(True, (2, 7, 3, 1)) 

""" 

try: 

q = int(F) 

except TypeError: 

q = F.cardinality() 

else: 

from sage.rings.finite_rings.finite_field_constructor import GF 

F = GF(q) 

 

if algorithm is None: 

from sage.matrix.echelon_matrix import reduced_echelon_matrix_iterator 

 

points = {p:i for i,p in enumerate(reduced_echelon_matrix_iterator(F,1,n+1,copy=True,set_immutable=True))} 

blocks = [] 

for m1 in reduced_echelon_matrix_iterator(F,d+1,n+1,copy=False): 

b = [] 

for m2 in reduced_echelon_matrix_iterator(F,1,d+1,copy=False): 

m = m2*m1 

m.echelonize() 

m.set_immutable() 

b.append(points[m]) 

blocks.append(b) 

B = BlockDesign(len(points), blocks, name="ProjectiveGeometryDesign", check=check) 

if point_coordinates: 

B.relabel({i:p[0] for p,i in six.iteritems(points)}) 

 

elif algorithm == "gap": # Requires GAP's Design 

from sage.interfaces.gap import gap 

gap.load_package("design") 

gap.eval("D := PGPointFlatBlockDesign( %s, %s, %d )"%(n,F.order(),d)) 

v = eval(gap.eval("D.v")) 

gblcks = eval(gap.eval("D.blocks")) 

gB = [] 

for b in gblcks: 

gB.append([x-1 for x in b]) 

B = BlockDesign(v, gB, name="ProjectiveGeometryDesign", check=check) 

 

if check: 

from sage.combinat.q_analogues import q_binomial 

q = F.cardinality() 

if not B.is_t_design(t=2, v=q_binomial(n+1,1,q), 

k=q_binomial(d+1,1,q), 

l=q_binomial(n-1, d-1, q)): 

raise RuntimeError("error in ProjectiveGeometryDesign " 

"construction. Please e-mail sage-devel@googlegroups.com") 

return B 

 

 

def DesarguesianProjectivePlaneDesign(n, point_coordinates=True, check=True): 

r""" 

Return the Desarguesian projective plane of order ``n`` as a 2-design. 

 

The Desarguesian projective plane of order `n` can also be defined as the 

projective plane over a field of order `n`. For more information, have a 

look at :wikipedia:`Projective_plane`. 

 

INPUT: 

 

- ``n`` -- an integer which must be a power of a prime number 

 

- ``point_coordinates`` (boolean) -- whether to label the points with their 

homogeneous coordinates (default) or with integers. 

 

- ``check`` -- (boolean) Whether to check that output is correct before 

returning it. As this is expected to be useless (but we are cautious 

guys), you may want to disable it whenever you want speed. Set to 

``True`` by default. 

 

.. SEEALSO:: 

 

:func:`ProjectiveGeometryDesign` 

 

EXAMPLES:: 

 

sage: designs.DesarguesianProjectivePlaneDesign(2) 

(7,3,1)-Balanced Incomplete Block Design 

sage: designs.DesarguesianProjectivePlaneDesign(3) 

(13,4,1)-Balanced Incomplete Block Design 

sage: designs.DesarguesianProjectivePlaneDesign(4) 

(21,5,1)-Balanced Incomplete Block Design 

sage: designs.DesarguesianProjectivePlaneDesign(5) 

(31,6,1)-Balanced Incomplete Block Design 

sage: designs.DesarguesianProjectivePlaneDesign(6) 

Traceback (most recent call last): 

... 

ValueError: the order of a finite field must be a prime power 

 

""" 

K = FiniteField(n, 'a') 

n2 = n**2 

relabel = {x:i for i,x in enumerate(K)} 

Kiter = relabel # it is much faster to iterate throug a dict than through 

# the finite field K 

 

# we decompose the (equivalence class) of points [x:y:z] of the projective 

# plane into an affine plane, an affine line and a point. At the same time, 

# we relabel the points with the integers from 0 to n^2 + n as follows: 

# - the affine plane is the set of points [x:y:1] (i.e. the third coordinate 

# is non-zero) and gets relabeled from 0 to n^2-1 

affine_plane = lambda x,y: relabel[x] + n * relabel[y] 

 

# - the affine line is the set of points [x:1:0] (i.e. the third coordinate is 

# zero but not the second one) and gets relabeld from n^2 to n^2 + n - 1 

line_infinity = lambda x: n2 + relabel[x] 

 

# - the point is [1:0:0] and gets relabeld n^2 + n 

point_infinity = n2 + n 

 

blcks = [] 

 

# the n^2 lines of the form "x = sy + az" 

for s in Kiter: 

for a in Kiter: 

# points in the affine plane 

blcks.append([affine_plane(s*y+a, y) for y in Kiter]) 

# point at infinity 

blcks[-1].append(line_infinity(s)) 

 

# the n horizontals of the form "y = az" 

for a in Kiter: 

# points in the affine plane 

blcks.append([affine_plane(x,a) for x in Kiter]) 

# point at infinity 

blcks[-1].append(point_infinity) 

 

# the line at infinity "z = 0" 

blcks.append(range(n2,n2+n+1)) 

if check: 

from .designs_pyx import is_projective_plane 

if not is_projective_plane(blcks): 

raise RuntimeError('There is a problem in the function DesarguesianProjectivePlane') 

from .bibd import BalancedIncompleteBlockDesign 

B = BalancedIncompleteBlockDesign(n2+n+1, blcks, check=check) 

 

if point_coordinates: 

zero = K.zero() 

one = K.one() 

d = {affine_plane(x,y): (x,y,one) 

for x in Kiter 

for y in Kiter} 

d.update({line_infinity(x): (x,one,zero) 

for x in Kiter}) 

d[n2+n]=(one,zero,zero) 

B.relabel(d) 

 

return B 

 

def q3_minus_one_matrix(K): 

r""" 

Return a companion matrix in `GL(3, K)` whose multiplicative order is `q^3 - 1`. 

 

This function is used in :func:`HughesPlane` 

 

EXAMPLES:: 

 

sage: from sage.combinat.designs.block_design import q3_minus_one_matrix 

sage: m = q3_minus_one_matrix(GF(3)) 

sage: m.multiplicative_order() == 3**3 - 1 

True 

 

sage: m = q3_minus_one_matrix(GF(4,'a')) 

sage: m.multiplicative_order() == 4**3 - 1 

True 

 

sage: m = q3_minus_one_matrix(GF(5)) 

sage: m.multiplicative_order() == 5**3 - 1 

True 

 

sage: m = q3_minus_one_matrix(GF(9,'a')) 

sage: m.multiplicative_order() == 9**3 - 1 

True 

""" 

q = K.cardinality() 

M = MatrixSpace(K, 3) 

 

if q.is_prime(): 

from sage.rings.finite_rings.conway_polynomials import conway_polynomial 

try: 

a,b,c,_ = conway_polynomial(q, 3) 

except RuntimeError: # the polynomial is not in the database 

pass 

else: 

return M([0,0,-a,1,0,-b,0,1,-c]) 

 

m = M() 

m[1,0] = m[2,1] = K.one() 

while True: 

m[0,2] = K._random_nonzero_element() 

m[1,2] = K.random_element() 

m[2,2] = K.random_element() 

if m.multiplicative_order() == q**3 - 1: 

return m 

 

def normalize_hughes_plane_point(p, q): 

r""" 

Return the normalized form of point ``p`` as a 3-tuple. 

 

In the Hughes projective plane over the finite field `K`, all triples `(xk, 

yk, zk)` with `k \in K` represent the same point (where the multiplication 

is over the nearfield built from `K`). This function chooses a canonical 

representative among them. 

 

This function is used in :func:`HughesPlane`. 

 

INPUT: 

 

- ``p`` - point with the coordinates (x,y,z) (a list, a vector, a tuple...) 

 

- ``q`` - cardinality of the underlying finite field 

 

EXAMPLES:: 

 

sage: from sage.combinat.designs.block_design import normalize_hughes_plane_point 

sage: K = FiniteField(9,'x') 

sage: x = K.gen() 

sage: normalize_hughes_plane_point((x, x+1, x), 9) 

(1, x, 1) 

sage: normalize_hughes_plane_point(vector((x,x,x)), 9) 

(1, 1, 1) 

sage: zero = K.zero() 

sage: normalize_hughes_plane_point((2*x+2, zero, zero), 9) 

(1, 0, 0) 

sage: one = K.one() 

sage: normalize_hughes_plane_point((2*x, one, zero), 9) 

(2*x, 1, 0) 

""" 

for i in [2,1,0]: 

if p[i].is_one(): 

return tuple(p) 

elif not p[i].is_zero(): 

k = ~p[i] 

if k.is_square(): 

return (p[0] * k,p[1] * k,p[2] * k) 

else: 

return ((p[0] * k)**q,(p[1]*k)**q,(p[2]*k)**q) 

 

def HughesPlane(q2, check=True): 

r""" 

Return the Hughes projective plane of order ``q2``. 

 

Let `q` be an odd prime, the Hughes plane of order `q^2` is a finite 

projective plane of order `q^2` introduced by D. Hughes in [Hu57]_. Its 

construction is as follows. 

 

Let `K = GF(q^2)` be a finite field with `q^2` elements and `F = GF(q) 

\subset K` be its unique subfield with `q` elements. We define a twisted 

multiplication on `K` as 

 

.. MATH:: 

 

x \circ y = 

\begin{cases} 

x\ y & \text{if y is a square in K}\\ 

x^q\ y & \text{otherwise} 

\end{cases} 

 

The points of the Hughes plane are the triples `(x, y, z)` of points in `K^3 

\backslash \{0,0,0\}` up to the equivalence relation `(x,y,z) \sim (x \circ 

k, y \circ k, z \circ k)` where `k \in K`. 

 

For `a = 1` or `a \in (K \backslash F)` we define a block `L(a)` as the set of 

triples `(x,y,z)` so that `x + a \circ y + z = 0`. The rest of the blocks 

are obtained by letting act the group `GL(3, F)` by its standard action. 

 

For more information, see :wikipedia:`Hughes_plane` and [We07]. 

 

.. SEEALSO:: 

 

:func:`DesarguesianProjectivePlaneDesign` to build the Desarguesian 

projective planes 

 

INPUT: 

 

- ``q2`` -- an even power of an odd prime number 

 

- ``check`` -- (boolean) Whether to check that output is correct before 

returning it. As this is expected to be useless (but we are cautious 

guys), you may want to disable it whenever you want speed. Set to 

``True`` by default. 

 

EXAMPLES:: 

 

sage: H = designs.HughesPlane(9) 

sage: H 

(91,10,1)-Balanced Incomplete Block Design 

 

We prove in the following computations that the Desarguesian plane ``H`` is 

not Desarguesian. Let us consider the two triangles `(0,1,10)` and `(57, 70, 

59)`. We show that the intersection points `D_{0,1} \cap D_{57,70}`, 

`D_{1,10} \cap D_{70,59}` and `D_{10,0} \cap D_{59,57}` are on the same line 

while `D_{0,70}`, `D_{1,59}` and `D_{10,57}` are not concurrent:: 

 

sage: blocks = H.blocks() 

sage: line = lambda p,q: next(b for b in blocks if p in b and q in b) 

 

sage: b_0_1 = line(0, 1) 

sage: b_1_10 = line(1, 10) 

sage: b_10_0 = line(10, 0) 

sage: b_57_70 = line(57, 70) 

sage: b_70_59 = line(70, 59) 

sage: b_59_57 = line(59, 57) 

 

sage: set(b_0_1).intersection(b_57_70) 

{2} 

sage: set(b_1_10).intersection(b_70_59) 

{73} 

sage: set(b_10_0).intersection(b_59_57) 

{60} 

 

sage: line(2, 73) == line(73, 60) 

True 

 

sage: b_0_57 = line(0, 57) 

sage: b_1_70 = line(1, 70) 

sage: b_10_59 = line(10, 59) 

 

sage: p = set(b_0_57).intersection(b_1_70) 

sage: q = set(b_1_70).intersection(b_10_59) 

sage: p == q 

False 

 

TESTS: 

 

Some wrong input:: 

 

sage: designs.HughesPlane(5) 

Traceback (most recent call last): 

... 

EmptySetError: No Hughes plane of non-square order exists. 

 

sage: designs.HughesPlane(16) 

Traceback (most recent call last): 

... 

EmptySetError: No Hughes plane of even order exists. 

 

Check that it works for non-prime `q`:: 

 

sage: designs.HughesPlane(3**4) # not tested - 10 secs 

(6643,82,1)-Balanced Incomplete Block Design 

""" 

if not q2.is_square(): 

raise EmptySetError("No Hughes plane of non-square order exists.") 

if q2%2 == 0: 

raise EmptySetError("No Hughes plane of even order exists.") 

q = q2.sqrt() 

K = FiniteField(q2, prefix='x') 

F = FiniteField(q, prefix='y') 

A = q3_minus_one_matrix(F) 

A = A.change_ring(K) 

m = K.list() 

V = VectorSpace(K, 3) 

zero = K.zero() 

one = K.one() 

points = [(x, y, one) for x in m for y in m] + \ 

[(x, one, zero) for x in m] + \ 

[(one, zero, zero)] 

relabel = {tuple(p):i for i,p in enumerate(points)} 

blcks = [] 

for a in m: 

if a not in F or a == 1: 

# build L(a) 

aa = ~a 

l = [] 

l.append(V((-a, one, zero))) 

for x in m: 

y = - aa * (x+one) 

if not y.is_square(): 

y *= aa**(q-1) 

l.append(V((x, y, one))) 

# compute the orbit of L(a) 

blcks.append([relabel[normalize_hughes_plane_point(p,q)] for p in l]) 

for i in range(q2 + q): 

l = [A*j for j in l] 

blcks.append([relabel[normalize_hughes_plane_point(p,q)] for p in l]) 

from .bibd import BalancedIncompleteBlockDesign 

return BalancedIncompleteBlockDesign(q2**2+q2+1, blcks, check=check) 

 

def projective_plane_to_OA(pplane, pt=None, check=True): 

r""" 

Return the orthogonal array built from the projective plane ``pplane``. 

 

The orthogonal array `OA(n+1,n,2)` is obtained from the projective plane 

``pplane`` by removing the point ``pt`` and the `n+1` lines that pass 

through it`. These `n+1` lines form the `n+1` groups while the remaining 

`n^2+n` lines form the transversals. 

 

INPUT: 

 

- ``pplane`` - a projective plane as a 2-design 

 

- ``pt`` - a point in the projective plane ``pplane``. If it is not provided 

then it is set to `n^2 + n`. 

 

- ``check`` -- (boolean) Whether to check that output is correct before 

returning it. As this is expected to be useless (but we are cautious 

guys), you may want to disable it whenever you want speed. Set to 

``True`` by default. 

 

EXAMPLES:: 

 

sage: from sage.combinat.designs.block_design import projective_plane_to_OA 

sage: p2 = designs.DesarguesianProjectivePlaneDesign(2,point_coordinates=False) 

sage: projective_plane_to_OA(p2) 

[[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]] 

sage: p3 = designs.DesarguesianProjectivePlaneDesign(3,point_coordinates=False) 

sage: projective_plane_to_OA(p3) 

[[0, 0, 0, 0], 

[0, 1, 2, 1], 

[0, 2, 1, 2], 

[1, 0, 2, 2], 

[1, 1, 1, 0], 

[1, 2, 0, 1], 

[2, 0, 1, 1], 

[2, 1, 0, 2], 

[2, 2, 2, 0]] 

 

sage: pp = designs.DesarguesianProjectivePlaneDesign(16,point_coordinates=False) 

sage: _ = projective_plane_to_OA(pp, pt=0) 

sage: _ = projective_plane_to_OA(pp, pt=3) 

sage: _ = projective_plane_to_OA(pp, pt=7) 

""" 

from .bibd import _relabel_bibd 

pplane = pplane.blocks() 

n = len(pplane[0]) - 1 

 

if pt is None: 

pt = n**2+n 

 

assert len(pplane) == n**2+n+1, "pplane is not a projective plane" 

assert all(len(B) == n+1 for B in pplane), "pplane is not a projective plane" 

 

pplane = _relabel_bibd(pplane,n**2+n+1,p=n**2+n) 

OA = [[x%n for x in sorted(X)] for X in pplane if not n**2+n in X] 

 

assert len(OA) == n**2, "pplane is not a projective plane" 

 

if check: 

from .designs_pyx import is_orthogonal_array 

is_orthogonal_array(OA,n+1,n,2) 

 

return OA 

 

def projective_plane(n, check=True, existence=False): 

r""" 

Return a projective plane of order ``n`` as a 2-design. 

 

A finite projective plane is a 2-design with `n^2+n+1` lines (or blocks) and 

`n^2+n+1` points. For more information on finite projective planes, see the 

:wikipedia:`Projective_plane#Finite_projective_planes`. 

 

If no construction is possible, then the function raises a ``EmptySetError`` 

whereas if no construction is available the function raises a 

``NotImplementedError``. 

 

INPUT: 

 

- ``n`` -- the finite projective plane's order 

 

EXAMPLES:: 

 

sage: designs.projective_plane(2) 

(7,3,1)-Balanced Incomplete Block Design 

sage: designs.projective_plane(3) 

(13,4,1)-Balanced Incomplete Block Design 

sage: designs.projective_plane(4) 

(21,5,1)-Balanced Incomplete Block Design 

sage: designs.projective_plane(5) 

(31,6,1)-Balanced Incomplete Block Design 

sage: designs.projective_plane(6) 

Traceback (most recent call last): 

... 

EmptySetError: By the Bruck-Ryser theorem, no projective plane of order 6 exists. 

sage: designs.projective_plane(10) 

Traceback (most recent call last): 

... 

EmptySetError: No projective plane of order 10 exists by C. Lam, L. Thiel and S. Swiercz "The nonexistence of finite projective planes of order 10" (1989), Canad. J. Math. 

sage: designs.projective_plane(12) 

Traceback (most recent call last): 

... 

NotImplementedError: If such a projective plane exists, we do not know how to build it. 

sage: designs.projective_plane(14) 

Traceback (most recent call last): 

... 

EmptySetError: By the Bruck-Ryser theorem, no projective plane of order 14 exists. 

 

TESTS:: 

 

sage: designs.projective_plane(2197, existence=True) 

True 

sage: designs.projective_plane(6, existence=True) 

False 

sage: designs.projective_plane(10, existence=True) 

False 

sage: designs.projective_plane(12, existence=True) 

Unknown 

""" 

from sage.rings.sum_of_squares import is_sum_of_two_squares_pyx 

 

if n <= 1: 

if existence: 

return False 

raise EmptySetError("There is no projective plane of order <= 1") 

 

if n == 10: 

if existence: 

return False 

ref = ("C. Lam, L. Thiel and S. Swiercz \"The nonexistence of finite " 

"projective planes of order 10\" (1989), Canad. J. Math.") 

raise EmptySetError("No projective plane of order 10 exists by %s"%ref) 

 

if (n%4) in [1,2] and not is_sum_of_two_squares_pyx(n): 

if existence: 

return False 

raise EmptySetError("By the Bruck-Ryser theorem, no projective" 

" plane of order {} exists.".format(n)) 

 

if not is_prime_power(n): 

if existence: 

return Unknown 

raise NotImplementedError("If such a projective plane exists, we do " 

"not know how to build it.") 

 

if existence: 

return True 

else: 

return DesarguesianProjectivePlaneDesign(n, point_coordinates=False, check=check) 

 

def AffineGeometryDesign(n, d, F, point_coordinates=True, check=True): 

r""" 

Return an affine geometry design. 

 

The affine geometry design `AG_d(n,q)` is the 2-design whose blocks are the 

`d`-vector subspaces in `\GF{q}^n`. It has parameters 

 

.. MATH:: 

 

v = q^n,\ k = q^d,\ \lambda = \binom{n-1}{d-1}_q 

 

where the `q`-binomial coefficient `\binom{m}{r}_q` is defined by 

 

.. MATH:: 

 

\binom{m}{r}_q = \frac{(q^m - 1)(q^{m-1} - 1) \cdots (q^{m-r+1}-1)} 

{(q^r-1)(q^{r-1}-1)\cdots (q-1)} 

 

.. SEEALSO:: 

 

:func:`ProjectiveGeometryDesign` 

 

INPUT: 

 

- ``n`` (integer) -- the Euclidean dimension. The number of points of the 

design is `v=|\GF{q}^n|`. 

 

- ``d`` (integer) -- the dimension of the (affine) subspaces of `\GF{q}^n` 

which make up the blocks. 

 

- ``F`` -- a finite field or a prime power. 

 

- ``point_coordinates`` -- (optional, default ``True``) whether we use 

coordinates in `\GF{q}^n` or plain integers for the points of the design. 

 

- ``check`` -- (optional, default ``True``) whether to check the output. 

 

EXAMPLES:: 

 

sage: BD = designs.AffineGeometryDesign(3, 1, GF(2)) 

sage: BD.is_t_design(return_parameters=True) 

(True, (2, 8, 2, 1)) 

sage: BD = designs.AffineGeometryDesign(3, 2, GF(4)) 

sage: BD.is_t_design(return_parameters=True) 

(True, (2, 64, 16, 5)) 

sage: BD = designs.AffineGeometryDesign(4, 2, GF(3)) 

sage: BD.is_t_design(return_parameters=True) 

(True, (2, 81, 9, 13)) 

 

With ``F`` an integer instead of a finite field:: 

 

sage: BD = designs.AffineGeometryDesign(3, 2, 4) 

sage: BD.is_t_design(return_parameters=True) 

(True, (2, 64, 16, 5)) 

 

Testing the option ``point_coordinates``:: 

 

sage: designs.AffineGeometryDesign(3, 1, GF(2), point_coordinates=True).blocks()[0] 

[(0, 0, 0), (0, 0, 1)] 

sage: designs.AffineGeometryDesign(3, 1, GF(2), point_coordinates=False).blocks()[0] 

[0, 1] 

""" 

try: 

q = int(F) 

except TypeError: 

q = F.cardinality() 

else: 

from sage.rings.finite_rings.finite_field_constructor import GF 

F = GF(q) 

 

n = int(n) 

d = int(d) 

 

from itertools import islice 

from sage.combinat.q_analogues import q_binomial 

from sage.matrix.echelon_matrix import reduced_echelon_matrix_iterator 

 

points = {p:i for i,p in enumerate(reduced_echelon_matrix_iterator(F,1,n+1,copy=True,set_immutable=True)) if p[0,0]} 

 

blocks = [] 

l1 = int(q_binomial(n+1, d+1, q) - q_binomial(n, d+1, q)) 

l2 = q**d 

for m1 in islice(reduced_echelon_matrix_iterator(F,d+1,n+1,copy=False), l1): 

b = [] 

for m2 in islice(reduced_echelon_matrix_iterator(F,1,d+1,copy=False), l2): 

m = m2*m1 

m.echelonize() 

m.set_immutable() 

b.append(points[m]) 

blocks.append(b) 

 

B = BlockDesign(len(points), blocks, name="AffineGeometryDesign", check=check) 

 

if point_coordinates: 

rd = {i:p[0][1:] for p,i in six.iteritems(points)} 

for v in rd.values(): v.set_immutable() 

B.relabel(rd) 

 

if check: 

if not B.is_t_design(t=2, v=q**n, k=q**d, l=q_binomial(n-1, d-1, q)): 

raise RuntimeError("error in AffineGeometryDesign " 

"construction. Please e-mail sage-devel@googlegroups.com") 

return B 

 

def CremonaRichmondConfiguration(): 

r""" 

Return the Cremona-Richmond configuration 

 

The Cremona-Richmond configuration is a set system whose incidence graph 

is equal to the 

:meth:`~sage.graphs.graph_generators.GraphGenerators.TutteCoxeterGraph`. It 

is a generalized quadrangle of parameters `(2,2)`. 

 

For more information, see the 

:wikipedia:`Cremona-Richmond_configuration`. 

 

EXAMPLES:: 

 

sage: H = designs.CremonaRichmondConfiguration(); H 

Incidence structure with 15 points and 15 blocks 

sage: g = graphs.TutteCoxeterGraph() 

sage: H.incidence_graph().is_isomorphic(g) 

True 

""" 

from sage.graphs.generators.smallgraphs import TutteCoxeterGraph 

from sage.combinat.designs.incidence_structures import IncidenceStructure 

g = TutteCoxeterGraph() 

H = IncidenceStructure([g.neighbors(v) 

for v in g.bipartite_sets()[0]]) 

H.relabel() 

return H 

 

def WittDesign(n): 

""" 

INPUT: 

 

- ``n`` is in `9,10,11,12,21,22,23,24`. 

 

Wraps GAP Design's WittDesign. If ``n=24`` then this function returns the 

large Witt design `W_{24}`, the unique (up to isomorphism) `5-(24,8,1)` 

design. If ``n=12`` then this function returns the small Witt design 

`W_{12}`, the unique (up to isomorphism) `5-(12,6,1)` design. The other 

values of `n` return a block design derived from these. 

 

.. NOTE:: 

 

Requires GAP's Design package (included in the gap_packages Sage spkg). 

 

EXAMPLES:: 

 

sage: BD = designs.WittDesign(9) # optional - gap_packages (design package) 

sage: BD.is_t_design(return_parameters=True) # optional - gap_packages (design package) 

(True, (2, 9, 3, 1)) 

sage: BD # optional - gap_packages (design package) 

Incidence structure with 9 points and 12 blocks 

sage: print(BD) # optional - gap_packages (design package) 

Incidence structure with 9 points and 12 blocks 

""" 

from sage.interfaces.gap import gap 

gap.load_package("design") 

gap.eval("B:=WittDesign(%s)"%n) 

v = eval(gap.eval("B.v")) 

gblcks = eval(gap.eval("B.blocks")) 

gB = [] 

for b in gblcks: 

gB.append([x-1 for x in b]) 

return BlockDesign(v, gB, name="WittDesign", check=True) 

 

 

def HadamardDesign(n): 

""" 

As described in Section 1, p. 10, in [CvL]. The input n must have the 

property that there is a Hadamard matrix of order `n+1` (and that a 

construction of that Hadamard matrix has been implemented...). 

 

EXAMPLES:: 

 

sage: designs.HadamardDesign(7) 

Incidence structure with 7 points and 7 blocks 

sage: print(designs.HadamardDesign(7)) 

Incidence structure with 7 points and 7 blocks 

 

For example, the Hadamard 2-design with `n = 11` is a design whose parameters are 2-(11, 5, 2). 

We verify that `NJ = 5J` for this design. :: 

 

sage: D = designs.HadamardDesign(11); N = D.incidence_matrix() 

sage: J = matrix(ZZ, 11, 11, [1]*11*11); N*J 

[5 5 5 5 5 5 5 5 5 5 5] 

[5 5 5 5 5 5 5 5 5 5 5] 

[5 5 5 5 5 5 5 5 5 5 5] 

[5 5 5 5 5 5 5 5 5 5 5] 

[5 5 5 5 5 5 5 5 5 5 5] 

[5 5 5 5 5 5 5 5 5 5 5] 

[5 5 5 5 5 5 5 5 5 5 5] 

[5 5 5 5 5 5 5 5 5 5 5] 

[5 5 5 5 5 5 5 5 5 5 5] 

[5 5 5 5 5 5 5 5 5 5 5] 

[5 5 5 5 5 5 5 5 5 5 5] 

 

REFERENCES: 

 

- [CvL] P. Cameron, J. H. van Lint, Designs, graphs, codes and 

their links, London Math. Soc., 1991. 

""" 

from sage.combinat.matrices.hadamard_matrix import hadamard_matrix 

from sage.matrix.constructor import matrix 

H = hadamard_matrix(n+1) #assumed to be normalised. 

H1 = H.matrix_from_columns(range(1,n+1)) 

H2 = H1.matrix_from_rows(range(1,n+1)) 

J = matrix(ZZ,n,n,[1]*n*n) 

MS = J.parent() 

A = MS((H2+J)/2) # convert -1's to 0's; coerce entries to ZZ 

# A is the incidence matrix of the block design 

return IncidenceStructure(incidence_matrix=A,name="HadamardDesign") 

 

def Hadamard3Design(n): 

""" 

Return the Hadamard 3-design with parameters `3-(n, \\frac n 2, \\frac n 4 - 1)`. 

 

This is the unique extension of the Hadamard `2`-design (see 

:meth:`HadamardDesign`). We implement the description from pp. 12 in 

[CvL]_. 

 

INPUT: 

 

- ``n`` (integer) -- a multiple of 4 such that `n>4`. 

 

EXAMPLES:: 

 

sage: designs.Hadamard3Design(12) 

Incidence structure with 12 points and 22 blocks 

 

We verify that any two blocks of the Hadamard `3`-design `3-(8, 4, 1)` 

design meet in `0` or `2` points. More generally, it is true that any two 

blocks of a Hadamard `3`-design meet in `0` or `\\frac{n}{4}` points (for `n 

> 4`). 

 

:: 

 

sage: D = designs.Hadamard3Design(8) 

sage: N = D.incidence_matrix() 

sage: N.transpose()*N 

[4 2 2 2 2 2 2 2 2 2 2 2 2 0] 

[2 4 2 2 2 2 2 2 2 2 2 2 0 2] 

[2 2 4 2 2 2 2 2 2 2 2 0 2 2] 

[2 2 2 4 2 2 2 2 2 2 0 2 2 2] 

[2 2 2 2 4 2 2 2 2 0 2 2 2 2] 

[2 2 2 2 2 4 2 2 0 2 2 2 2 2] 

[2 2 2 2 2 2 4 0 2 2 2 2 2 2] 

[2 2 2 2 2 2 0 4 2 2 2 2 2 2] 

[2 2 2 2 2 0 2 2 4 2 2 2 2 2] 

[2 2 2 2 0 2 2 2 2 4 2 2 2 2] 

[2 2 2 0 2 2 2 2 2 2 4 2 2 2] 

[2 2 0 2 2 2 2 2 2 2 2 4 2 2] 

[2 0 2 2 2 2 2 2 2 2 2 2 4 2] 

[0 2 2 2 2 2 2 2 2 2 2 2 2 4] 

 

 

REFERENCES: 

 

.. [CvL] \P. Cameron, J. H. van Lint, Designs, graphs, codes and 

their links, London Math. Soc., 1991. 

""" 

if n == 1 or n == 4: 

raise ValueError("The Hadamard design with n = %s does not extend to a three design." % n) 

from sage.combinat.matrices.hadamard_matrix import hadamard_matrix 

from sage.matrix.constructor import matrix, block_matrix 

H = hadamard_matrix(n) #assumed to be normalised. 

H1 = H.matrix_from_columns(range(1, n)) 

J = matrix(ZZ, n, n-1, [1]*(n-1)*n) 

A1 = (H1+J)/2 

A2 = (J-H1)/2 

A = block_matrix(1, 2, [A1, A2]) #the incidence matrix of the design. 

return IncidenceStructure(incidence_matrix=A, name="HadamardThreeDesign")