Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

r""" 

Cython functions for combinatorial designs 

  

This module implements the design methods that need to be somewhat efficient. 

  

Functions 

--------- 

""" 

from __future__ import print_function, absolute_import 

  

include "sage/data_structures/bitset.pxi" 

  

from libc.string cimport memset 

from cysignals.memory cimport sig_malloc, sig_calloc, sig_realloc, sig_free 

  

from sage.misc.unknown import Unknown 

  

def is_orthogonal_array(OA, int k, int n, int t=2, verbose=False, terminology="OA"): 

r""" 

Check that the integer matrix `OA` is an `OA(k,n,t)`. 

  

See :func:`~sage.combinat.designs.orthogonal_arrays.orthogonal_array` 

for a definition. 

  

INPUT: 

  

- ``OA`` -- the Orthogonal Array to be tested 

  

- ``k,n,t`` (integers) -- only implemented for `t=2`. 

  

- ``verbose`` (boolean) -- whether to display some information when ``OA`` 

is not an orthogonal array `OA(k,n)`. 

  

- ``terminology`` (string) -- how to phrase the information when ``verbose = 

True``. Possible values are `"OA"`, `"MOLS"`. 

  

EXAMPLES:: 

  

sage: from sage.combinat.designs.designs_pyx import is_orthogonal_array 

sage: OA = designs.orthogonal_arrays.build(8,9) 

sage: is_orthogonal_array(OA,8,9) 

True 

sage: is_orthogonal_array(OA,8,10) 

False 

sage: OA[4][3] = 1 

sage: is_orthogonal_array(OA,8,9) 

False 

sage: is_orthogonal_array(OA,8,9,verbose=True) 

Columns 0 and 3 are not orthogonal 

False 

sage: is_orthogonal_array(OA,8,9,verbose=True,terminology="MOLS") 

Squares 0 and 3 are not orthogonal 

False 

  

TESTS:: 

  

sage: is_orthogonal_array(OA,8,9,t=3) 

Traceback (most recent call last): 

... 

NotImplementedError: only implemented for t=2 

sage: is_orthogonal_array([[3]*8],8,9,verbose=True) 

The number of rows is 1 instead of 9^2=81 

False 

sage: is_orthogonal_array([[3]*8],8,9,verbose=True,terminology="MOLS") 

All squares do not have dimension n^2=9^2 

False 

sage: is_orthogonal_array([[3]*7],8,9,verbose=True) 

Some row does not have length 8 

False 

sage: is_orthogonal_array([[3]*7],8,9,verbose=True,terminology="MOLS") 

The number of squares is not 6 

False 

  

Up to relabelling, there is a unique `OA(3,2)`. So their number is just the 

cardinality of the relabeling group which is `S_2^3 \times S_3` and has 

cardinality `48`:: 

  

sage: from itertools import product 

sage: n = 0 

sage: for a in product(product((0,1), repeat=3), repeat=4): 

....: if is_orthogonal_array(a,3,2): 

....: n += 1 

sage: n 

48 

""" 

cdef int n2 = n*n 

cdef int x 

  

if t != 2: 

raise NotImplementedError("only implemented for t=2") 

  

for R in OA: 

if len(R) != k: 

if verbose: 

print({"OA" : "Some row does not have length "+str(k), 

"MOLS" : "The number of squares is not "+str(k-2)}[terminology]) 

return False 

  

if len(OA) != n2: 

if verbose: 

print({"OA" : "The number of rows is {} instead of {}^2={}".format(len(OA),n,n2), 

"MOLS" : "All squares do not have dimension n^2={}^2".format(n)}[terminology]) 

return False 

  

if n == 0: 

return True 

  

cdef int i,j,l 

  

# A copy of OA 

cdef unsigned short * OAc = <unsigned short *> sig_malloc(k*n2*sizeof(unsigned short)) 

  

cdef unsigned short * C1 

cdef unsigned short * C2 

  

# failed malloc ? 

if OAc is NULL: 

raise MemoryError 

  

# Filling OAc 

for i,R in enumerate(OA): 

for j,x in enumerate(R): 

if x < 0 or x >= n: 

if verbose: 

print({"OA" : "{} is not in the interval [0..{}]".format(x,n-1), 

"MOLS" : "Entry {} was expected to be in the interval [0..{}]".format(x,n-1)}[terminology]) 

sig_free(OAc) 

return False 

OAc[j*n2+i] = x 

  

# A bitset to keep track of pairs of values 

cdef bitset_t seen 

bitset_init(seen, n2) 

  

for i in range(k): # For any column C1 

C1 = OAc+i*n2 

for j in range(i+1,k): # For any column C2 > C1 

C2 = OAc+j*n2 

bitset_set_first_n(seen, 0) # No pair has been seen yet 

for l in range(n2): 

bitset_add(seen,n*C1[l]+C2[l]) 

  

if bitset_len(seen) != n2: # Have we seen all pairs ? 

sig_free(OAc) 

bitset_free(seen) 

if verbose: 

print({"OA" : "Columns {} and {} are not orthogonal".format(i,j), 

"MOLS" : "Squares {} and {} are not orthogonal".format(i,j)}[terminology]) 

return False 

  

sig_free(OAc) 

bitset_free(seen) 

return True 

  

def is_group_divisible_design(groups,blocks,v,G=None,K=None,lambd=1,verbose=False): 

r""" 

Checks that input is a Group Divisible Design on `\{0,...,v-1\}` 

  

For more information on Group Divisible Designs, see 

:class:`~sage.combinat.designs.group_divisible_designs.GroupDivisibleDesign`. 

  

INPUT: 

  

- ``groups`` -- a partition of `X`. If set to ``None`` the groups are 

guessed automatically, and the function returns ``(True, guessed_groups)`` 

instead of ``True`` 

  

- ``blocks`` -- collection of blocks 

  

- ``v`` (integers) -- size of the ground set assumed to be `X=\{0,...,v-1\}`. 

  

- ``G`` -- list of integers of which the sizes of the groups must be 

elements. Set to ``None`` (automatic guess) by default. 

  

- ``K`` -- list of integers of which the sizes of the blocks must be 

elements. Set to ``None`` (automatic guess) by default. 

  

- ``lambd`` -- value of `\lambda`. Set to `1` by default. 

  

- ``verbose`` (boolean) -- whether to display some information when the 

design is not a GDD. 

  

EXAMPLES:: 

  

sage: from sage.combinat.designs.designs_pyx import is_group_divisible_design 

sage: TD = designs.transversal_design(4,10) 

sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)] 

sage: is_group_divisible_design(groups,TD,40,lambd=1) 

True 

  

TESTS:: 

  

sage: TD = designs.transversal_design(4,10) 

sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)] 

sage: is_group_divisible_design(groups,TD,40,lambd=2,verbose=True) 

the pair (0,10) has been seen 1 times but lambda=2 

False 

sage: is_group_divisible_design([[1,2],[3,4]],[[1,2]],40,lambd=1,verbose=True) 

groups is not a partition of [0,...,39] 

False 

sage: is_group_divisible_design([list(range(40))],[[1,2]],40,lambd=1,verbose=True) 

the pair (1,2) belongs to a group but appears in some block 

False 

sage: is_group_divisible_design([list(range(40))],[[2,2]],40,lambd=1,verbose=True) 

The following block has repeated elements: [2, 2] 

False 

sage: is_group_divisible_design([list(range(40))],[["e",2]],40,lambd=1,verbose=True) 

e does not belong to [0,...,39] 

False 

sage: is_group_divisible_design([list(range(40))],[list(range(40))],40,G=[5],lambd=1,verbose=True) 

a group has size 40 while G=[5] 

False 

sage: is_group_divisible_design([list(range(40))],[["e",2]],40,K=[1],lambd=1,verbose=True) 

a block has size 2 while K=[1] 

False 

  

sage: p = designs.projective_plane(3) 

sage: is_group_divisible_design(None, p.blocks(), 13) 

(True, [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]]) 

sage: is_group_divisible_design(None, p.blocks()*2, 13, verbose=True) 

the pair (0,1) has been seen 2 times but lambda=1 

False 

sage: is_group_divisible_design(None, p.blocks()*2, 13, lambd=2) 

(True, [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]]) 

""" 

cdef int n = v 

cdef int i,ii,j,jj,s,isok 

cdef int l = lambd 

cdef bint guess_groups = groups is None 

  

if v < 0 or lambd < 0: 

if verbose: 

print("v={} and lambda={} must be non-negative integers".format(v,l)) 

return False 

  

# Block sizes are element of K 

if K is not None: 

K = set(K) 

for b in blocks: 

if not len(b) in K: 

if verbose: 

print("a block has size {} while K={}".format(len(b),list(K))) 

return False 

  

# Check that "groups" consists of disjoints sets whose union has length n 

if (groups is not None and 

(sum(len(g) for g in groups) != n or 

len(set().union(*groups)) != n)): 

if verbose: 

print("groups is not a partition of [0,...,{}]".format(n-1)) 

return False 

  

# Checks that the blocks are indeed sets and do not repeat elements 

for b in blocks: 

if len(b) != len(set(b)): 

if verbose: 

print("The following block has repeated elements: {}".format(b)) 

return False 

  

# Check that the groups/blocks belong to [0,...,n-1] 

from itertools import chain 

for b in chain(groups if groups is not None else [],blocks): 

for x in b: 

try: 

i = x 

except TypeError: 

i = -1 

if i < 0 or i >= n: 

if verbose: 

print("{} does not belong to [0,...,{}]".format(x, n-1)) 

return False 

  

cdef unsigned short * matrix = <unsigned short *> sig_calloc(n*n,sizeof(unsigned short)) 

if matrix is NULL: 

raise MemoryError 

  

# Counts the number of occurrences of each pair of points 

for b in blocks: 

s = len(b) 

for i in range(s): 

ii = b[i] 

for j in range(i+1,s): 

jj = b[j] 

matrix[ii*n+jj] += 1 

matrix[jj*n+ii] += 1 

  

# Guess the groups (if necessary) 

if groups is None: 

from sage.sets.disjoint_set import DisjointSet_of_integers 

groups = DisjointSet_of_integers(n) 

for i in range(n): 

for j in range(i+1,n): 

if matrix[i*n+j] == 0: 

groups.union(i,j) 

groups = groups.root_to_elements_dict().values() 

  

# Group sizes are element of G 

if G is not None: 

G = set(G) 

for g in groups: 

if not len(g) in G: 

if verbose: 

print("a group has size {} while G={}".format(len(g),list(G))) 

sig_free(matrix) 

return False 

  

# Checks that two points of the same group were never covered 

for g in groups: 

s = len(g) 

for i in range(s): 

ii = g[i] 

for j in range(i+1,s): 

jj = g[j] 

if matrix[ii*n+jj] != 0: 

if verbose: 

print("the pair ({},{}) belongs to a group but appears in some block".format(ii, jj)) 

sig_free(matrix) 

return False 

  

# We fill the entries with what is expected by the next loop 

matrix[ii*n+jj] = l 

matrix[jj*n+ii] = l 

  

# Checking that what should be equal to lambda IS equal to lambda 

for i in range(n): 

for j in range(i+1,n): 

if matrix[i*n+j] != l: 

if verbose: 

print("the pair ({},{}) has been seen {} times but lambda={}".format(i,j,matrix[i*n+j],l)) 

sig_free(matrix) 

return False 

  

sig_free(matrix) 

  

return True if not guess_groups else (True, groups) 

  

def is_pairwise_balanced_design(blocks,v,K=None,lambd=1,verbose=False): 

r""" 

Checks that input is a Pairwise Balanced Design (PBD) on `\{0,...,v-1\}` 

  

For more information on Pairwise Balanced Designs (PBD), see 

:class:`~sage.combinat.designs.bibd.PairwiseBalancedDesign`. 

  

INPUT: 

  

- ``blocks`` -- collection of blocks 

  

- ``v`` (integers) -- size of the ground set assumed to be `X=\{0,...,v-1\}`. 

  

- ``K`` -- list of integers of which the sizes of the blocks must be 

elements. Set to ``None`` (automatic guess) by default. 

  

- ``lambd`` -- value of `\lambda`. Set to `1` by default. 

  

- ``verbose`` (boolean) -- whether to display some information when the 

design is not a PBD. 

  

EXAMPLES:: 

  

sage: from sage.combinat.designs.designs_pyx import is_pairwise_balanced_design 

sage: sts = designs.steiner_triple_system(9) 

sage: is_pairwise_balanced_design(sts,9,[3],1) 

True 

sage: TD = designs.transversal_design(4,10).blocks() 

sage: groups = [list(range(i*10,(i+1)*10)) for i in range(4)] 

sage: is_pairwise_balanced_design(TD+groups,40,[4,10],1,verbose=True) 

True 

  

TESTS:: 

  

sage: from sage.combinat.designs.designs_pyx import is_pairwise_balanced_design 

sage: is_pairwise_balanced_design(TD+groups,40,[4,10],2,verbose=True) 

the pair (0,1) has been seen 1 times but lambda=2 

False 

sage: is_pairwise_balanced_design(TD+groups,40,[10],1,verbose=True) 

a block has size 4 while K=[10] 

False 

sage: is_pairwise_balanced_design([[2,2]],40,[2],1,verbose=True) 

The following block has repeated elements: [2, 2] 

False 

sage: is_pairwise_balanced_design([["e",2]],40,[2],1,verbose=True) 

e does not belong to [0,...,39] 

False 

""" 

return is_group_divisible_design([[i] for i in range(v)], 

blocks, 

v, 

K=K, 

lambd=lambd, 

verbose=verbose) 

  

def is_projective_plane(blocks, verbose=False): 

r""" 

Test whether the blocks form a projective plane on `\{0,...,v-1\}` 

  

A *projective plane* is an incidence structure that has the following properties: 

  

1. Given any two distinct points, there is exactly one line incident with both of them. 

2. Given any two distinct lines, there is exactly one point incident with both of them. 

3. There are four points such that no line is incident with more than two of them. 

  

For more informations, see :wikipedia:`Projective_plane`. 

  

:meth:`~IncidenceStructure.is_t_design` can also check if an incidence structure is a projective plane 

with the parameters `v=k^2+k+1`, `t=2` and `l=1`. 

  

INPUT: 

  

- ``blocks`` -- collection of blocks 

  

- ``verbose`` -- whether to print additional information 

  

  

EXAMPLES:: 

  

sage: from sage.combinat.designs.designs_pyx import is_projective_plane 

sage: p = designs.projective_plane(4) 

sage: b = p.blocks() 

sage: is_projective_plane(b, verbose=True) 

True 

  

sage: p = designs.projective_plane(2) 

sage: b = p.blocks() 

sage: is_projective_plane(b) 

True 

sage: b[0][2] = 5 

sage: is_projective_plane(b, verbose=True) 

the pair (0,5) has been seen 2 times but lambda=1 

False 

  

sage: is_projective_plane([[0,1,2],[1,2,4]], verbose=True) 

the pair (0,3) has been seen 0 times but lambda=1 

False 

  

sage: is_projective_plane([[1]], verbose=True) 

First block has less than 3 points. 

False 

  

sage: p = designs.projective_plane(2) 

sage: b = p.blocks() 

sage: b[2].append(4) 

sage: is_projective_plane(b, verbose=True) 

a block has size 4 while K=[3] 

False 

""" 

if not blocks: 

if verbose: 

print('There is no block.') 

return False 

k = len(blocks[0])-1 

if k < 2: 

if verbose: 

print('First block has less than 3 points.') 

return False 

v = k**2 + k + 1 

return is_group_divisible_design([[i] for i in range(v)], 

blocks, 

v, 

K=[k+1], 

lambd=1, 

verbose=verbose) 

  

def is_difference_matrix(M,G,k,lmbda=1,verbose=False): 

r""" 

Test if `M` is a `(G,k,\lambda)`-difference matrix. 

  

A matrix `M` is a `(G,k,\lambda)`-difference matrix if its entries are 

element of `G`, and if for any two rows `R,R'` of `M` and `x\in G` there 

are exactly `\lambda` values `i` such that `R_i-R'_i=x`. 

  

INPUT: 

  

- ``M`` -- a matrix with entries from ``G`` 

  

- ``G`` -- a group 

  

- ``k`` -- integer 

  

- ``lmbda`` (integer) -- set to `1` by default. 

  

- ``verbose`` (boolean) -- whether to print some information when the answer 

is ``False``. 

  

EXAMPLES:: 

  

sage: from sage.combinat.designs.designs_pyx import is_difference_matrix 

sage: q = 3**3 

sage: F = GF(q,'x') 

sage: M = [[x*y for y in F] for x in F] 

sage: is_difference_matrix(M,F,q,verbose=1) 

True 

  

sage: B = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

....: [0, 1, 2, 3, 4, 2, 3, 4, 0, 1], 

....: [0, 2, 4, 1, 3, 3, 0, 2, 4, 1]] 

sage: G = GF(5) 

sage: B = [[G(b) for b in R] for R in B] 

sage: is_difference_matrix(list(zip(*B)),G,3,2) 

True 

  

Bad input:: 

  

sage: for R in M: R.append(None) 

sage: is_difference_matrix(M,F,q,verbose=1) 

The matrix has 28 columns but k=27 

False 

sage: for R in M: _=R.pop(-1) 

sage: M.append([None]*3**3) 

sage: is_difference_matrix(M,F,q,verbose=1) 

The matrix has 28 rows instead of lambda(|G|-1+2u)+mu=1(27-1+2.0)+1=27 

False 

sage: _= M.pop(-1) 

sage: for R in M: R[-1] = 0 

sage: is_difference_matrix(M,F,q,verbose=1) 

Columns 0 and 26 generate 0 exactly 27 times instead of the expected mu(=1) 

False 

sage: for R in M: R[-1] = 1 

sage: M[-1][-1] = 0 

sage: is_difference_matrix(M,F,q,verbose=1) 

Columns 0 and 26 do not generate all elements of G exactly lambda(=1) times. The element x appeared 0 times as a difference. 

False 

""" 

return is_quasi_difference_matrix(M,G,k,lmbda=lmbda,mu=lmbda,u=0,verbose=verbose) 

  

def is_quasi_difference_matrix(M,G,int k,int lmbda,int mu,int u,verbose=False): 

r""" 

Test if the matrix is a `(G,k;\lambda,\mu;u)`-quasi-difference matrix 

  

Let `G` be an abelian group of order `n`. A 

`(n,k;\lambda,\mu;u)`-quasi-difference matrix (QDM) is a matrix `Q_{ij}` 

with `\lambda(n-1+2u)+\mu` rows and `k` columns, with each entry either 

equal to ``None`` (i.e. the 'missing entries') or to an element of `G`. Each 

column contains exactly `\lambda u` empty entries, and each row contains at 

most one ``None``. Furthermore, for each `1\leq i<j\leq k`, the multiset 

  

.. MATH:: 

  

\{q_{li}-q_{lj}:1\leq l\leq \lambda (n-1+2u)+\mu, \text{ with } q_{li}\text{ and }q_{lj}\text{ not empty}\} 

  

contains `\lambda` times every nonzero element of `G` and contains `\mu` 

times `0`. 

  

INPUT: 

  

- ``M`` -- a matrix with entries from ``G`` (or equal to ``None`` for 

missing entries) 

  

- ``G`` -- a group 

  

- ``k,lmbda,mu,u`` -- integers 

  

- ``verbose`` (boolean) -- whether to print some information when the answer 

is ``False``. 

  

EXAMPLES: 

  

Differences matrices:: 

  

sage: from sage.combinat.designs.designs_pyx import is_quasi_difference_matrix 

sage: q = 3**3 

sage: F = GF(q,'x') 

sage: M = [[x*y for y in F] for x in F] 

sage: is_quasi_difference_matrix(M,F,q,1,1,0,verbose=1) 

True 

  

sage: B = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

....: [0, 1, 2, 3, 4, 2, 3, 4, 0, 1], 

....: [0, 2, 4, 1, 3, 3, 0, 2, 4, 1]] 

sage: G = GF(5) 

sage: B = [[G(b) for b in R] for R in B] 

sage: is_quasi_difference_matrix(list(zip(*B)),G,3,2,2,0) 

True 

  

A quasi-difference matrix from the database:: 

  

sage: from sage.combinat.designs.database import QDM 

sage: G,M = QDM[38,1][37,1,1,1][1]() 

sage: is_quasi_difference_matrix(M,G,k=6,lmbda=1,mu=1,u=1) 

True 

  

Bad input:: 

  

sage: is_quasi_difference_matrix(M,G,k=6,lmbda=1,mu=1,u=3,verbose=1) 

The matrix has 39 rows instead of lambda(|G|-1+2u)+mu=1(37-1+2.3)+1=43 

False 

sage: is_quasi_difference_matrix(M,G,k=6,lmbda=1,mu=2,u=1,verbose=1) 

The matrix has 39 rows instead of lambda(|G|-1+2u)+mu=1(37-1+2.1)+2=40 

False 

sage: M[3][1] = None 

sage: is_quasi_difference_matrix(M,G,k=6,lmbda=1,mu=1,u=1,verbose=1) 

Row 3 contains more than one empty entry 

False 

sage: M[3][1] = 1 

sage: M[6][1] = None 

sage: is_quasi_difference_matrix(M,G,k=6,lmbda=1,mu=1,u=1,verbose=1) 

Column 1 contains 2 empty entries instead of the expected lambda.u=1.1=1 

False 

""" 

from .difference_family import group_law 

  

assert k>=2 

assert lmbda >=1 

assert mu>=0 

assert u>=0 

  

cdef int n = G.cardinality() 

cdef int M_nrows = len(M) 

cdef int i,j,ii 

cdef bint bit 

  

# Height of the matrix 

if lmbda*(n-1+2*u)+mu != M_nrows: 

if verbose: 

print("The matrix has {} rows instead of lambda(|G|-1+2u)+mu={}({}-1+2.{})+{}={}".format(M_nrows,lmbda,n,u,mu,lmbda*(n-1+2*u)+mu)) 

return False 

  

# Width of the matrix 

for R in M: 

if len(R)!=k: 

if verbose: 

print("The matrix has {} columns but k={}".format(len(R),k)) 

return False 

  

# When |G|=0 

if M_nrows == 0: 

return True 

  

# Map group element with integers 

cdef list int_to_group = list(G) 

cdef dict group_to_int = {v:i for i,v in enumerate(int_to_group)} 

  

# Allocations 

cdef int ** x_minus_y = <int **> sig_malloc((n+1)*sizeof(int *)) 

cdef int * x_minus_y_data = <int *> sig_malloc((n+1)*(n+1)*sizeof(int)) 

cdef int * M_c = <int *> sig_malloc(k*M_nrows*sizeof(int)) 

cdef int * G_seen = <int *> sig_malloc((n+1)*sizeof(int)) 

if (x_minus_y == NULL or x_minus_y_data == NULL or M_c == NULL or G_seen == NULL): 

sig_free(x_minus_y) 

sig_free(x_minus_y_data) 

sig_free(G_seen) 

sig_free(M_c) 

raise MemoryError 

  

# The "x-y" table. If g_i, g_j \in G, then x_minus_y[i][j] is equal to 

# group_to_int[g_i-g_j]. 

# 

# In order to handle empty values represented by n, we have 

# x_minus_y[?][n]=x_minus_y[n][?]=n 

zero, op, inv = group_law(G) 

x_minus_y[0] = x_minus_y_data 

for i in range(1,n+1): 

x_minus_y[i] = x_minus_y[i-1] + n+1 

  

# Elements of G 

for j,Gj in enumerate(int_to_group): 

minus_Gj = inv(Gj) 

assert op(Gj, minus_Gj) == zero 

for i,Gi in enumerate(int_to_group): 

x_minus_y[i][j] = group_to_int[op(Gi,minus_Gj)] 

  

# Empty values 

for i in range(n+1): 

x_minus_y[n][i]=n 

x_minus_y[i][n]=n 

  

# A copy of the matrix 

for i,R in enumerate(M): 

for j,x in enumerate(R): 

M_c[i*k+j] = group_to_int[G(x)] if x is not None else n 

  

# Each row contains at most one empty entry 

if u: 

for i in range(M_nrows): 

bit = False 

for j in range(k): 

if M_c[i*k+j] == n: 

if bit: 

if verbose: 

print("Row {} contains more than one empty entry".format(i)) 

sig_free(x_minus_y_data) 

sig_free(x_minus_y) 

sig_free(G_seen) 

sig_free(M_c) 

return False 

bit = True 

  

# Each column contains lmbda*u empty entries 

for j in range(k): 

ii = 0 

for i in range(M_nrows): 

if M_c[i*k+j] == n: 

ii += 1 

if ii!=lmbda*u: 

if verbose: 

print("Column {} contains {} empty entries instead of the expected " 

"lambda.u={}.{}={}".format(j, ii, lmbda, u, lmbda*u)) 

sig_free(x_minus_y_data) 

sig_free(x_minus_y) 

sig_free(G_seen) 

sig_free(M_c) 

return False 

  

# We are now ready to test every pair of columns 

for i in range(k): 

for j in range(i+1,k): 

memset(G_seen, 0, (n+1)*sizeof(int)) 

for ii in range(M_nrows): 

G_seen[x_minus_y[M_c[ii*k+i]][M_c[ii*k+j]]] += 1 

  

if G_seen[0] != mu: # Bad number of 0 

if verbose: 

print("Columns {} and {} generate 0 exactly {} times " 

"instead of the expected mu(={})".format(i,j,G_seen[0],mu)) 

sig_free(x_minus_y_data) 

sig_free(x_minus_y) 

sig_free(G_seen) 

sig_free(M_c) 

return False 

  

for ii in range(1,n): # bad number of g_ii\in G 

if G_seen[ii] != lmbda: 

if verbose: 

print("Columns {} and {} do not generate all elements of G " 

"exactly lambda(={}) times. The element {} appeared {} " 

"times as a difference.".format(i,j,lmbda,int_to_group[ii],G_seen[ii])) 

sig_free(x_minus_y_data) 

sig_free(x_minus_y) 

sig_free(G_seen) 

sig_free(M_c) 

return False 

  

sig_free(x_minus_y_data) 

sig_free(x_minus_y) 

sig_free(G_seen) 

sig_free(M_c) 

return True 

  

# Cached information for OA constructions (see .pxd file for more info) 

  

_OA_cache = <cache_entry *> sig_malloc(2*sizeof(cache_entry)) 

if (_OA_cache == NULL): 

sig_free(_OA_cache) 

raise MemoryError 

_OA_cache[0].max_true = -1 

_OA_cache[1].max_true = -1 

_OA_cache_size = 2 

  

cpdef _OA_cache_set(int k,int n,truth_value): 

r""" 

Sets a value in the OA cache of existence results 

  

INPUT: 

  

- ``k,n`` (integers) 

  

- ``truth_value`` -- one of ``True,False,Unknown`` 

""" 

global _OA_cache, _OA_cache_size 

cdef int i 

if _OA_cache_size <= n: 

new_cache_size = n+100 

_OA_cache = <cache_entry *> sig_realloc(_OA_cache,new_cache_size*sizeof(cache_entry)) 

if _OA_cache == NULL: 

sig_free(_OA_cache) 

raise MemoryError 

  

for i in range(_OA_cache_size,new_cache_size): 

_OA_cache[i].max_true = 0 

_OA_cache[i].min_unknown = -1 

_OA_cache[i].max_unknown = 0 

_OA_cache[i].min_false = -1 

  

_OA_cache_size = new_cache_size 

  

if truth_value is True: 

_OA_cache[n].max_true = k if k>_OA_cache[n].max_true else _OA_cache[n].max_true 

elif truth_value is Unknown: 

_OA_cache[n].min_unknown = k if k<_OA_cache[n].min_unknown else _OA_cache[n].min_unknown 

_OA_cache[n].max_unknown = k if k>_OA_cache[n].max_unknown else _OA_cache[n].max_unknown 

else: 

_OA_cache[n].min_false = k if k<_OA_cache[n].min_false else _OA_cache[n].min_false 

  

cpdef _OA_cache_get(int k,int n): 

r""" 

Gets a value from the OA cache of existence results 

  

INPUT: 

  

``k,n`` (integers) 

""" 

if n>=_OA_cache_size: 

return None 

if k <= _OA_cache[n].max_true: 

return True 

elif (k >= _OA_cache[n].min_unknown and k <= _OA_cache[n].max_unknown): 

return Unknown 

elif k >= _OA_cache[n].min_false: 

return False 

  

return None 

  

cpdef _OA_cache_construction_available(int k,int n): 

r""" 

Tests if a construction is implemented using the cache's information 

  

INPUT: 

  

- ``k,n`` (integers) 

""" 

if n>=_OA_cache_size: 

return Unknown 

if k <= _OA_cache[n].max_true: 

return True 

if k >= _OA_cache[n].min_unknown: 

return False 

else: 

return Unknown