Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

# -*- coding: utf-8 -*- 

r""" 

Mutually Orthogonal Latin Squares (MOLS) 

 

The main function of this module is :func:`mutually_orthogonal_latin_squares` 

and can be can be used to generate MOLS (or check that they exist):: 

 

sage: MOLS = designs.mutually_orthogonal_latin_squares(4,8) 

 

For more information on MOLS, see the :wikipedia:`Wikipedia entry on MOLS 

<Graeco-Latin_square#Mutually_orthogonal_Latin_squares>`. If you are only 

interested by latin squares, see :mod:`~sage.combinat.matrices.latin`. 

 

The functions defined here are 

 

.. csv-table:: 

:class: contentstable 

:widths: 30, 70 

:delim: | 

 

:meth:`mutually_orthogonal_latin_squares` | Return `k` Mutually Orthogonal `n\times n` Latin Squares. 

:meth:`are_mutually_orthogonal_latin_squares` | Check that the list ``l`` of matrices in are MOLS. 

:meth:`latin_square_product` | Return the product of two (or more) latin squares. 

:meth:`MOLS_table` | Prints the MOLS table. 

 

**Table of MOLS** 

 

Sage can produce a table of MOLS similar to the one from the Handbook of 

Combinatorial Designs [DesignHandbook]_ (`available here 

<http://books.google.fr/books?id=S9FA9rq1BgoC&dq=handbook%20combinatorial%20designs%20MOLS%2010000&pg=PA176>`_). 

 

:: 

 

sage: from sage.combinat.designs.latin_squares import MOLS_table 

sage: MOLS_table(600) # long time 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

________________________________________________________________________________ 

0| +oo +oo 1 2 3 4 1 6 7 8 2 10 5 12 4 4 15 16 5 18 

20| 4 5 3 22 7 24 4 26 5 28 4 30 31 5 4 5 8 36 4 5 

40| 7 40 5 42 5 6 4 46 8 48 6 5 5 52 5 6 7 7 5 58 

60| 5 60 5 6 63 7 5 66 5 6 6 70 7 72 5 7 6 6 6 78 

80| 9 80 8 82 6 6 6 6 7 88 6 7 6 6 6 6 7 96 6 8 

100| 8 100 6 102 7 7 6 106 6 108 6 6 13 112 6 7 6 8 6 6 

120| 7 120 6 6 6 124 6 126 127 7 6 130 6 7 6 7 7 136 6 138 

140| 6 7 6 10 10 7 6 7 6 148 6 150 7 8 8 7 6 156 7 6 

160| 9 7 6 162 6 7 6 166 7 168 6 8 6 172 6 6 14 9 6 178 

180| 6 180 6 6 7 9 6 10 6 8 6 190 7 192 6 7 6 196 6 198 

200| 7 7 6 7 6 8 6 8 14 11 10 210 6 7 6 7 7 8 6 10 

220| 6 12 6 222 13 8 6 226 6 228 6 7 7 232 6 7 6 7 6 238 

240| 7 240 6 242 6 7 6 12 7 7 6 250 6 12 9 7 255 256 6 12 

260| 6 8 8 262 7 8 7 10 7 268 7 270 15 16 6 13 10 276 6 9 

280| 7 280 6 282 6 12 6 7 15 288 6 6 6 292 6 6 7 10 10 12 

300| 7 7 7 7 15 15 6 306 7 7 7 310 7 312 7 10 7 316 7 10 

320| 15 15 6 16 8 12 6 7 7 9 6 330 7 8 7 6 7 336 6 7 

340| 6 10 10 342 7 7 6 346 6 348 8 12 18 352 6 9 7 9 6 358 

360| 7 360 6 7 7 7 6 366 15 15 7 15 7 372 7 15 7 13 7 378 

380| 7 12 7 382 15 15 7 15 7 388 7 16 7 7 7 7 8 396 7 7 

400| 15 400 7 15 11 8 7 15 8 408 7 13 8 12 10 9 18 15 7 418 

420| 7 420 7 15 7 16 6 7 7 7 6 430 15 432 6 15 6 18 7 438 

440| 7 15 7 442 7 13 7 11 15 448 7 15 7 7 7 15 7 456 7 16 

460| 7 460 7 462 15 15 7 466 8 8 7 15 7 15 10 18 7 15 6 478 

480| 15 15 6 15 8 7 6 486 7 15 6 490 6 16 6 7 15 15 6 498 

500| 7 8 9 502 7 15 6 15 7 508 6 15 511 18 7 15 8 12 8 15 

520| 8 520 10 522 12 15 8 16 15 528 7 15 8 12 7 15 8 15 10 15 

540| 12 540 7 15 18 7 7 546 7 8 7 18 7 7 7 7 7 556 7 12 

560| 15 7 7 562 7 7 6 7 7 568 6 570 7 7 15 22 8 576 7 7 

580| 7 8 7 10 7 8 7 586 7 18 17 7 15 592 8 15 7 7 8 598 

 

Comparison with the results from the Handbook of Combinatorial Designs (2ed) 

[DesignHandbook]_:: 

 

sage: MOLS_table(600,compare=True) # long time 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

________________________________________________________________________________ 

0| + + 

20| 

40| 

60| + 

80| 

100| 

120| 

140| 

160| 

180| 

200| - 

220| 

240| 

260| 

280| 

300| 

320| - 

340| 

360| - - 

380| - 

400| 

420| - 

440| 

460| 

480| 

500| - 

520| 

540| 

560| 

580| 

 

.. TODO:: 

 

Look at [ColDin01]_. 

 

REFERENCES: 

 

.. [Stinson2004] Douglas R. Stinson, 

Combinatorial designs: construction and analysis, 

Springer, 2004. 

 

.. [ColDin01] Charles Colbourn, Jeffrey Dinitz, 

Mutually orthogonal latin squares: a brief survey of constructions, 

Volume 95, Issues 1-2, Pages 9-48, 

Journal of Statistical Planning and Inference, 

Springer, 1 May 2001. 

 

Functions 

--------- 

""" 

from __future__ import print_function, absolute_import 

from six import iteritems 

from six.moves import zip 

 

from sage.categories.sets_cat import EmptySetError 

from sage.misc.unknown import Unknown 

 

 

def are_mutually_orthogonal_latin_squares(l, verbose=False): 

r""" 

Check wether the list of matrices in ``l`` form mutually orthogonal latin 

squares. 

 

INPUT: 

 

- ``verbose`` - if ``True`` then print why the list of matrices provided are 

not mutually orthogonal latin squares 

 

EXAMPLES:: 

 

sage: from sage.combinat.designs.latin_squares import are_mutually_orthogonal_latin_squares 

sage: m1 = matrix([[0,1,2],[2,0,1],[1,2,0]]) 

sage: m2 = matrix([[0,1,2],[1,2,0],[2,0,1]]) 

sage: m3 = matrix([[0,1,2],[2,0,1],[1,2,0]]) 

sage: are_mutually_orthogonal_latin_squares([m1,m2]) 

True 

sage: are_mutually_orthogonal_latin_squares([m1,m3]) 

False 

sage: are_mutually_orthogonal_latin_squares([m2,m3]) 

True 

sage: are_mutually_orthogonal_latin_squares([m1,m2,m3], verbose=True) 

Squares 0 and 2 are not orthogonal 

False 

 

sage: m = designs.mutually_orthogonal_latin_squares(7,8) 

sage: are_mutually_orthogonal_latin_squares(m) 

True 

 

TESTS: 

 

Not a latin square:: 

 

sage: m1 = matrix([[0,1,0],[2,0,1],[1,2,0]]) 

sage: m2 = matrix([[0,1,2],[1,2,0],[2,0,1]]) 

sage: are_mutually_orthogonal_latin_squares([m1,m2], verbose=True) 

Matrix 0 is not row latin 

False 

sage: m1 = matrix([[0,1,2],[1,0,2],[1,2,0]]) 

sage: are_mutually_orthogonal_latin_squares([m1,m2], verbose=True) 

Matrix 0 is not column latin 

False 

sage: m1 = matrix([[0,0,0],[1,1,1],[2,2,2]]) 

sage: m2 = matrix([[0,1,2],[0,1,2],[0,1,2]]) 

sage: are_mutually_orthogonal_latin_squares([m1,m2]) 

False 

""" 

 

if not l: 

raise ValueError("the list must be non empty") 

 

n = l[0].ncols() 

k = len(l) 

if any(M.ncols() != n or M.nrows() != n for M in l): 

if verbose: 

print("Not all matrices are square matrices of the same dimensions") 

return False 

 

# Check that all matrices are latin squares 

for i,M in enumerate(l): 

if any(len(set(R)) != n for R in M): 

if verbose: 

print("Matrix {} is not row latin".format(i)) 

return False 

if any(len(set(R)) != n for R in zip(*M)): 

if verbose: 

print("Matrix {} is not column latin".format(i)) 

return False 

 

from .designs_pyx import is_orthogonal_array 

return is_orthogonal_array(list(zip(*[[x for R in M for x in R] for M in l])),k,n, verbose=verbose, terminology="MOLS") 

 

 

def mutually_orthogonal_latin_squares(k,n, partitions = False, check = True, existence=False): 

r""" 

Return `k` Mutually Orthogonal `n\times n` Latin Squares (MOLS). 

 

For more information on Mutually Orthogonal Latin Squares, see 

:mod:`~sage.combinat.designs.latin_squares`. 

 

INPUT: 

 

- ``k`` (integer) -- number of MOLS. If ``k=None`` it is set to the largest 

value available. 

 

- ``n`` (integer) -- size of the latin square. 

 

- ``partition`` (boolean) -- a Latin Square can be seen as 3 partitions of 

the `n^2` cells of the array into `n` sets of size `n`, respectively : 

 

* The partition of rows 

* The partition of columns 

* The partition of number (cells numbered with 0, cells numbered with 1, 

...) 

 

These partitions have the additional property that any two sets from 

different partitions intersect on exactly one element. 

 

When ``partition`` is set to ``True``, this function returns a list of `k+2` 

partitions satisfying this intersection property instead of the `k+2` MOLS 

(though the data is exactly the same in both cases). 

 

- ``existence`` (boolean) -- instead of building the design, return: 

 

- ``True`` -- meaning that Sage knows how to build the design 

 

- ``Unknown`` -- meaning that Sage does not know how to build the 

design, but that the design may exist (see :mod:`sage.misc.unknown`). 

 

- ``False`` -- meaning that the design does not exist. 

 

.. NOTE:: 

 

When ``k=None`` and ``existence=True`` the function returns an 

integer, i.e. the largest `k` such that we can build a `k` MOLS of 

order `n`. 

 

- ``check`` -- (boolean) Whether to check that output is correct before 

returning it. As this is expected to be useless (but we are cautious 

guys), you may want to disable it whenever you want speed. Set to 

``True`` by default. 

 

EXAMPLES:: 

 

sage: designs.mutually_orthogonal_latin_squares(4,5) 

[ 

[0 2 4 1 3] [0 3 1 4 2] [0 4 3 2 1] [0 1 2 3 4] 

[4 1 3 0 2] [3 1 4 2 0] [2 1 0 4 3] [4 0 1 2 3] 

[3 0 2 4 1] [1 4 2 0 3] [4 3 2 1 0] [3 4 0 1 2] 

[2 4 1 3 0] [4 2 0 3 1] [1 0 4 3 2] [2 3 4 0 1] 

[1 3 0 2 4], [2 0 3 1 4], [3 2 1 0 4], [1 2 3 4 0] 

] 

 

sage: designs.mutually_orthogonal_latin_squares(3,7) 

[ 

[0 2 4 6 1 3 5] [0 3 6 2 5 1 4] [0 4 1 5 2 6 3] 

[6 1 3 5 0 2 4] [5 1 4 0 3 6 2] [4 1 5 2 6 3 0] 

[5 0 2 4 6 1 3] [3 6 2 5 1 4 0] [1 5 2 6 3 0 4] 

[4 6 1 3 5 0 2] [1 4 0 3 6 2 5] [5 2 6 3 0 4 1] 

[3 5 0 2 4 6 1] [6 2 5 1 4 0 3] [2 6 3 0 4 1 5] 

[2 4 6 1 3 5 0] [4 0 3 6 2 5 1] [6 3 0 4 1 5 2] 

[1 3 5 0 2 4 6], [2 5 1 4 0 3 6], [3 0 4 1 5 2 6] 

] 

 

sage: designs.mutually_orthogonal_latin_squares(2,5,partitions=True) 

[[[0, 1, 2, 3, 4], 

[5, 6, 7, 8, 9], 

[10, 11, 12, 13, 14], 

[15, 16, 17, 18, 19], 

[20, 21, 22, 23, 24]], 

[[0, 5, 10, 15, 20], 

[1, 6, 11, 16, 21], 

[2, 7, 12, 17, 22], 

[3, 8, 13, 18, 23], 

[4, 9, 14, 19, 24]], 

[[0, 8, 11, 19, 22], 

[3, 6, 14, 17, 20], 

[1, 9, 12, 15, 23], 

[4, 7, 10, 18, 21], 

[2, 5, 13, 16, 24]], 

[[0, 9, 13, 17, 21], 

[2, 6, 10, 19, 23], 

[4, 8, 12, 16, 20], 

[1, 5, 14, 18, 22], 

[3, 7, 11, 15, 24]]] 

 

What is the maximum number of MOLS of size 8 that Sage knows how to build?:: 

 

sage: designs.orthogonal_arrays.largest_available_k(8)-2 

7 

 

If you only want to know if Sage is able to build a given set of 

MOLS, query the ``orthogonal_arrays.*`` functions:: 

 

sage: designs.orthogonal_arrays.is_available(5+2, 5) # 5 MOLS of order 5 

False 

sage: designs.orthogonal_arrays.is_available(4+2,6) # 4 MOLS of order 6 

False 

 

Sage, however, is not able to prove that the second MOLS do not exist:: 

 

sage: designs.orthogonal_arrays.exists(4+2,6) # 4 MOLS of order 6 

Unknown 

 

If you ask for such a MOLS then you will respectively get an informative 

``EmptySetError`` or ``NotImplementedError``:: 

 

sage: designs.mutually_orthogonal_latin_squares(5, 5) 

Traceback (most recent call last): 

... 

EmptySetError: There exist at most n-1 MOLS of size n if n>=2. 

sage: designs.mutually_orthogonal_latin_squares(4,6) 

Traceback (most recent call last): 

... 

NotImplementedError: I don't know how to build 4 MOLS of order 6 

 

TESTS: 

 

The special case `n=1`:: 

 

sage: designs.mutually_orthogonal_latin_squares(3, 1) 

[[0], [0], [0]] 

sage: designs.mutually_orthogonal_latin_squares(None, 1) 

Traceback (most recent call last): 

... 

ValueError: there are no bound on k when 0<=n<=1 

sage: designs.mutually_orthogonal_latin_squares(2,10) 

[ 

[1 8 9 0 2 4 6 3 5 7] [1 7 6 5 0 9 8 2 3 4] 

[7 2 8 9 0 3 5 4 6 1] [8 2 1 7 6 0 9 3 4 5] 

[6 1 3 8 9 0 4 5 7 2] [9 8 3 2 1 7 0 4 5 6] 

[5 7 2 4 8 9 0 6 1 3] [0 9 8 4 3 2 1 5 6 7] 

[0 6 1 3 5 8 9 7 2 4] [2 0 9 8 5 4 3 6 7 1] 

[9 0 7 2 4 6 8 1 3 5] [4 3 0 9 8 6 5 7 1 2] 

[8 9 0 1 3 5 7 2 4 6] [6 5 4 0 9 8 7 1 2 3] 

[2 3 4 5 6 7 1 8 9 0] [3 4 5 6 7 1 2 8 0 9] 

[3 4 5 6 7 1 2 0 8 9] [5 6 7 1 2 3 4 0 9 8] 

[4 5 6 7 1 2 3 9 0 8], [7 1 2 3 4 5 6 9 8 0] 

] 

""" 

from sage.combinat.designs.orthogonal_arrays import orthogonal_array 

from sage.matrix.constructor import Matrix 

from .database import MOLS_constructions 

 

# Is k is None we find the largest available 

if k is None: 

from sage.misc.superseded import deprecation 

deprecation(17034,"please use designs.orthogonal_arrays.largest_available_k instead of k=None") 

if n == 0 or n == 1: 

if existence: 

from sage.rings.infinity import Infinity 

return Infinity 

raise ValueError("there are no bound on k when 0<=n<=1") 

 

k = orthogonal_array(None,n,existence=True) - 2 

if existence: 

return k 

 

if existence: 

from sage.misc.superseded import deprecation 

deprecation(17034,"please use designs.orthogonal_arrays.is_available/exists instead of existence=True") 

 

if n == 1: 

if existence: 

return True 

matrices = [Matrix([[0]])]*k 

 

elif k >= n: 

if existence: 

return False 

raise EmptySetError("There exist at most n-1 MOLS of size n if n>=2.") 

 

elif n in MOLS_constructions and k <= MOLS_constructions[n][0]: 

if existence: 

return True 

_, construction = MOLS_constructions[n] 

 

matrices = construction()[:k] 

 

elif orthogonal_array(k+2,n,existence=True) is not Unknown: 

# Forwarding non-existence results 

if orthogonal_array(k+2,n,existence=True): 

if existence: 

return True 

else: 

if existence: 

return False 

raise EmptySetError("There does not exist {} MOLS of order {}!".format(k,n)) 

 

# make sure that the first two columns are "11, 12, ..., 1n, 21, 22, ..." 

OA = sorted(orthogonal_array(k+2,n,check=False)) 

 

# We first define matrices as lists of n^2 values 

matrices = [[] for _ in range(k)] 

for L in OA: 

for i in range(2,k+2): 

matrices[i-2].append(L[i]) 

 

# The real matrices 

matrices = [[M[i*n:(i+1)*n] for i in range(n)] for M in matrices] 

matrices = [Matrix(M) for M in matrices] 

 

else: 

if existence: 

return Unknown 

raise NotImplementedError("I don't know how to build {} MOLS of order {}".format(k,n)) 

 

if check: 

assert are_mutually_orthogonal_latin_squares(matrices) 

 

# partitions have been requested but have not been computed yet 

if partitions is True: 

partitions = [[[i*n+j for j in range(n)] for i in range(n)], 

[[j*n+i for j in range(n)] for i in range(n)]] 

for m in matrices: 

partition = [[] for i in range(n)] 

for i in range(n): 

for j in range(n): 

partition[m[i,j]].append(i*n+j) 

partitions.append(partition) 

 

if partitions: 

return partitions 

else: 

return matrices 

 

def latin_square_product(M,N,*others): 

r""" 

Return the product of two (or more) latin squares. 

 

Given two Latin Squares `M,N` of respective sizes `m,n`, the direct product 

`M\times N` of size `mn` is defined by `(M\times 

N)((i_1,i_2),(j_1,j_2))=(M(i_1,j_1),N(i_2,j_2))` where `i_1,j_1\in [m], 

i_2,j_2\in [n]` 

 

Each pair of values `(i,j)\in [m]\times [n]` is then relabeled to `in+j`. 

 

This is Lemma 6.25 of [Stinson2004]_. 

 

INPUT: 

 

An arbitrary number of latin squares (greater than 2). 

 

EXAMPLES:: 

 

sage: from sage.combinat.designs.latin_squares import latin_square_product 

sage: m=designs.mutually_orthogonal_latin_squares(3,4)[0] 

sage: latin_square_product(m,m,m) 

64 x 64 sparse matrix over Integer Ring (use the '.str()' method to see the entries) 

""" 

from sage.matrix.constructor import Matrix 

m = M.nrows() 

n = N.nrows() 

 

D = {((i,j),(ii,jj)):(M[i,ii],N[j,jj]) 

for i in range(m) 

for ii in range(m) 

for j in range(n) 

for jj in range(n)} 

 

L = lambda i_j: i_j[0] * n + i_j[1] 

D = {(L(c[0]), L(c[1])): L(v) for c, v in iteritems(D)} 

P = Matrix(D) 

 

if others: 

return latin_square_product(P, others[0],*others[1:]) 

else: 

return P 

 

 

def MOLS_table(start,stop=None,compare=False,width=None): 

r""" 

Prints the MOLS table that Sage can produce. 

 

INPUT: 

 

- ``start,stop`` (integers) -- print the table of MOLS for value of `n` such 

that ``start<=n<stop``. If only one integer is given as input, it is 

interpreted as the value of ``stop`` with ``start=0`` (same behaviour as 

``range``). 

 

- ``compare`` (boolean) -- if sets to ``True`` the MOLS displays 

with `+` and `-` entries its difference with the table from the 

Handbook of Combinatorial Designs (2ed). 

 

- ``width`` (integer) -- the width of each column of the table. By default, 

it is computed from range of values determined by the parameters ``start`` 

and ``stop``. 

 

EXAMPLES:: 

 

sage: from sage.combinat.designs.latin_squares import MOLS_table 

sage: MOLS_table(100) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

________________________________________________________________________________ 

0| +oo +oo 1 2 3 4 1 6 7 8 2 10 5 12 4 4 15 16 5 18 

20| 4 5 3 22 7 24 4 26 5 28 4 30 31 5 4 5 8 36 4 5 

40| 7 40 5 42 5 6 4 46 8 48 6 5 5 52 5 6 7 7 5 58 

60| 5 60 5 6 63 7 5 66 5 6 6 70 7 72 5 7 6 6 6 78 

80| 9 80 8 82 6 6 6 6 7 88 6 7 6 6 6 6 7 96 6 8 

sage: MOLS_table(100, width=4) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

____________________________________________________________________________________________________ 

0| +oo +oo 1 2 3 4 1 6 7 8 2 10 5 12 4 4 15 16 5 18 

20| 4 5 3 22 7 24 4 26 5 28 4 30 31 5 4 5 8 36 4 5 

40| 7 40 5 42 5 6 4 46 8 48 6 5 5 52 5 6 7 7 5 58 

60| 5 60 5 6 63 7 5 66 5 6 6 70 7 72 5 7 6 6 6 78 

80| 9 80 8 82 6 6 6 6 7 88 6 7 6 6 6 6 7 96 6 8 

sage: MOLS_table(100, compare=True) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

________________________________________________________________________________ 

0| + + 

20| 

40| 

60| + 

80| 

sage: MOLS_table(50, 100, compare=True) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

________________________________________________________________________________ 

40| 

60| + 

80| 

""" 

from .orthogonal_arrays import largest_available_k 

if stop is None: 

start,stop = 0,start 

# make start and stop be congruent to 0 mod 20 

start = start - (start%20) 

stop = stop-1 

stop = stop + (20-(stop%20)) 

assert start%20 == 0 and stop%20 == 0 

if stop <= start: 

return 

 

if compare: 

from sage.env import SAGE_SHARE 

handbook_file = open(SAGE_SHARE+"/combinatorial_designs/MOLS_table.txt",'r') 

hb = [int(_) for _ in handbook_file.readlines()[9].split(',')] 

handbook_file.close() 

 

# choose an appropriate width (needs to be >= 3 because "+oo" should fit) 

if width is None: 

from sage.rings.integer import Integer 

width = max(3, Integer(stop-1).ndigits(10)) 

 

print(" " * (width + 2) + " ".join("{i:>{width}}".format(i=i,width=width) 

for i in range(20))) 

print(" " * (width + 1) + "_" * ((width + 1) * 20), end="") 

for i in range(start,stop): 

if i % 20 == 0: 

print("\n{:>{width}}|".format(i, width=width), end="") 

k = largest_available_k(i)-2 

if compare: 

if i < 2 or hb[i] == k: 

c = "" 

elif hb[i] < k: 

c = "+" 

else: 

c = "-" 

else: 

if i < 2: 

c = "+oo" 

else: 

c = k 

print(' {:>{width}}'.format(c, width=width), end="")