Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

r""" 

Resolvable Balanced Incomplete Block Design (RBIBD) 

 

This module contains everything related to resolvable Balanced Incomplete Block 

Designs. The constructions implemented here can be obtained through the 

``designs.<tab>`` object:: 

 

designs.resolvable_balanced_incomplete_block_design(15,3) 

 

For Balanced Incomplete Block Design (BIBD) see the module :mod:`bibd 

<sage.combinat.designs.bibd>`. A BIBD 

is said to be *resolvable* if its blocks can be partitionned into parallel 

classes, i.e. partitions of its ground set. 

 

The main function of this module is 

:func:`resolvable_balanced_incomplete_block_design`, which calls all others. 

 

.. csv-table:: 

:class: contentstable 

:widths: 30, 70 

:delim: | 

 

:func:`resolvable_balanced_incomplete_block_design` | Return a resolvable BIBD of parameters `v,k`. 

:func:`kirkman_triple_system` | Return a Kirkman Triple System on `v` points. 

:func:`v_4_1_rbibd` | Return a `(v,4,1)`-RBIBD 

:func:`PBD_4_7` | Return a `(v,\{4,7\})`-PBD 

:func:`PBD_4_7_from_Y` | Return a `(3v+1,\{4,7\})`-PBD from a `(v,\{4,5,7\},\NN-\{3,6,10\})`-GDD. 

 

References: 

 

.. [Stinson91] \D.R. Stinson, 

A survey of Kirkman triple systems and related designs, 

Volume 92, Issues 1-3, 17 November 1991, Pages 371-393, 

Discrete Mathematics, 

:doi:`10.1016/0012-365X(91)90294-C` 

 

.. [RCW71] \D. K. Ray-Chaudhuri, R. M. Wilson, 

Solution of Kirkman's schoolgirl problem, 

Volume 19, Pages 187-203, 

Proceedings of Symposia in Pure Mathematics 

 

.. [BJL99] \T. Beth, D. Jungnickel, H. Lenz, 

Design Theory 2ed. 

Cambridge University Press 

1999 

 

Functions 

--------- 

""" 

from __future__ import print_function, absolute_import, division 

from six.moves import range 

 

from sage.arith.all import is_prime_power 

from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign 

from sage.categories.sets_cat import EmptySetError 

from .bibd import balanced_incomplete_block_design 

from sage.misc.unknown import Unknown 

 

def resolvable_balanced_incomplete_block_design(v,k,existence=False): 

r""" 

Return a resolvable BIBD of parameters `v,k`. 

 

A BIBD is said to be *resolvable* if its blocks can be partitionned into 

parallel classes, i.e. partitions of the ground set. 

 

INPUT: 

 

- ``v,k`` (integers) 

 

- ``existence`` (boolean) -- instead of building the design, return: 

 

- ``True`` -- meaning that Sage knows how to build the design 

 

- ``Unknown`` -- meaning that Sage does not know how to build the 

design, but that the design may exist (see :mod:`sage.misc.unknown`). 

 

- ``False`` -- meaning that the design does not exist. 

 

.. SEEALSO:: 

 

- :meth:`IncidenceStructure.is_resolvable` 

- :func:`~sage.combinat.designs.bibd.balanced_incomplete_block_design` 

 

EXAMPLES:: 

 

sage: KTS15 = designs.resolvable_balanced_incomplete_block_design(15,3); KTS15 

(15,3,1)-Balanced Incomplete Block Design 

sage: KTS15.is_resolvable() 

True 

 

TESTS:: 

 

sage: for v in range(40): 

....: for k in range(v): 

....: if designs.resolvable_balanced_incomplete_block_design(v,k,existence=True): 

....: _ = designs.resolvable_balanced_incomplete_block_design(v,k) 

""" 

# Trivial cases 

if v==1 or k==v: 

return balanced_incomplete_block_design(v,k,existence=existence) 

 

# Non-existence of resolvable BIBD 

if (v < k or 

k < 2 or 

v%k != 0 or 

(v-1) % (k-1) != 0 or 

(v*(v-1)) % (k*(k-1)) != 0 or 

# From the Handbook of combinatorial designs: 

# 

# With lambda>1 the other exceptions is 

# (15,5,2) 

(k==6 and v == 36) or 

# Fisher's inequality 

(v*(v-1))/(k*(k-1)) < v): 

if existence: 

return False 

raise EmptySetError("There exists no ({},{},{})-RBIBD".format(v,k,1)) 

 

if k==2: 

if existence: 

return True 

classes = [[[(c+i)%(v-1),(c+v-i)%(v-1)] for i in range(1, v//2)] 

for c in range(v-1)] 

for i,classs in enumerate(classes): 

classs.append([v-1,i]) 

 

B = BalancedIncompleteBlockDesign(v, 

sum(classes,[]), 

k = k, 

check=True, 

copy=False) 

B._classes = classes 

return B 

elif k==3: 

return kirkman_triple_system(v,existence=existence) 

elif k==4: 

return v_4_1_rbibd(v,existence=existence) 

else: 

if existence: 

return Unknown 

raise NotImplementedError("I don't know how to build a ({},{},1)-RBIBD!".format(v,3)) 

 

def kirkman_triple_system(v,existence=False): 

r""" 

Return a Kirkman Triple System on `v` points. 

 

A Kirkman Triple System `KTS(v)` is a resolvable Steiner Triple System. It 

exists if and only if `v\equiv 3\pmod{6}`. 

 

INPUT: 

 

- `n` (integer) 

 

- ``existence`` (boolean; ``False`` by default) -- whether to build the 

`KTS(n)` or only answer whether it exists. 

 

.. SEEALSO:: 

 

:meth:`IncidenceStructure.is_resolvable` 

 

EXAMPLES: 

 

A solution to Kirkmman's original problem:: 

 

sage: kts = designs.kirkman_triple_system(15) 

sage: classes = kts.is_resolvable(1)[1] 

sage: names = '0123456789abcde' 

sage: def to_name(r_s_t): 

....: r, s, t = r_s_t 

....: return ' ' + names[r] + names[s] + names[t] + ' ' 

sage: rows = [' '.join(('Day {}'.format(i) for i in range(1,8)))] 

sage: rows.extend(' '.join(map(to_name,row)) for row in zip(*classes)) 

sage: print('\n'.join(rows)) 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

07e 18e 29e 3ae 4be 5ce 6de 

139 24a 35b 46c 05d 167 028 

26b 03c 14d 257 368 049 15a 

458 569 06a 01b 12c 23d 347 

acd 7bd 78c 89d 79a 8ab 9bc 

 

TESTS:: 

 

sage: for i in range(3,300,6): 

....: _ = designs.kirkman_triple_system(i) 

""" 

if v%6 != 3: 

if existence: 

return False 

raise ValueError("There is no KTS({}) as v!=3 mod(6)".format(v)) 

 

if existence: 

return False 

 

elif v == 3: 

return BalancedIncompleteBlockDesign(3,[[0,1,2]],k=3,lambd=1) 

 

elif v == 9: 

classes = [[[0, 1, 5], [2, 6, 7], [3, 4, 8]], 

[[1, 6, 8], [3, 5, 7], [0, 2, 4]], 

[[1, 4, 7], [0, 3, 6], [2, 5, 8]], 

[[4, 5, 6], [0, 7, 8], [1, 2, 3]]] 

KTS = BalancedIncompleteBlockDesign(v,[tr for cl in classes for tr in cl],k=3,lambd=1,copy=False) 

KTS._classes = classes 

return KTS 

 

# Construction 1.1 from [Stinson91] (originally Theorem 6 from [RCW71]) 

# 

# For all prime powers q=1 mod 6, there exists a KTS(2q+1) 

elif ((v-1)//2)%6 == 1 and is_prime_power((v-1)//2): 

from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF 

q = (v-1)//2 

K = GF(q,'x') 

a = K.primitive_element() 

t = (q - 1) // 6 

 

# m is the solution of a^m=(a^t+1)/2 

from sage.groups.generic import discrete_log 

m = discrete_log((a**t+1)/2, a) 

assert 2*a**m == a**t+1 

 

# First parallel class 

first_class = [[(0,1),(0,2),'inf']] 

b0 = K.one(); b1 = a**t; b2 = a**m 

first_class.extend([(b0*a**i,1),(b1*a**i,1),(b2*a**i,2)] 

for i in list(range(t))+list(range(2*t,3*t))+list(range(4*t,5*t))) 

b0 = a**(m+t); b1=a**(m+3*t); b2=a**(m+5*t) 

first_class.extend([[(b0*a**i,2),(b1*a**i,2),(b2*a**i,2)] 

for i in range(t)]) 

 

# Action of K on the points 

action = lambda v,x : (v+x[0],x[1]) if len(x) == 2 else x 

 

# relabel to integer 

relabel = {(p,x): i+(x-1)*q 

for i,p in enumerate(K) 

for x in [1,2]} 

relabel['inf'] = 2*q 

 

classes = [[[relabel[action(p,x)] for x in tr] for tr in first_class] 

for p in K] 

 

KTS = BalancedIncompleteBlockDesign(v,[tr for cl in classes for tr in cl],k=3,lambd=1,copy=False) 

 

KTS._classes = classes 

return KTS 

 

# Construction 1.2 from [Stinson91] (originally Theorem 5 from [RCW71]) 

# 

# For all prime powers q=1 mod 6, there exists a KTS(3q) 

elif (v//3)%6 == 1 and is_prime_power(v//3): 

from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF 

q = v//3 

K = GF(q,'x') 

a = K.primitive_element() 

t = (q - 1) // 6 

A0 = [(0,0),(0,1),(0,2)] 

B = [[(a**i,j),(a**(i+2*t),j),(a**(i+4*t),j)] for j in range(3) 

for i in range(t)] 

A = [[(a**i,0),(a**(i+2*t),1),(a**(i+4*t),2)] for i in range(6*t)] 

 

# Action of K on the points 

action = lambda v,x: (v+x[0],x[1]) 

 

# relabel to integer 

relabel = {(p,j): i+j*q 

for i,p in enumerate(K) 

for j in range(3)} 

 

B0 = [A0] + B + A[t:2*t] + A[3*t:4*t] + A[5*t:6*t] 

 

# Classes 

classes = [[[relabel[action(p,x)] for x in tr] for tr in B0] 

for p in K] 

 

for i in list(range(t))+list(range(2*t,3*t))+list(range(4*t,5*t)): 

classes.append([[relabel[action(p,x)] for x in A[i]] for p in K]) 

 

KTS = BalancedIncompleteBlockDesign(v,[tr for cl in classes for tr in cl],k=3,lambd=1,copy=False) 

KTS._classes = classes 

return KTS 

 

else: 

# This is Lemma IX.6.4 from [BJL99]. 

# 

# This construction takes a (v,{4,7})-PBD. All points are doubled (x has 

# a copy x'), and an infinite point \infty is added. 

# 

# On all blocks of 2*4 points we "paste" a KTS(2*4+1) using the infinite 

# point, in such a way that all {x,x',infty} are set of the design. We 

# do the same for blocks with 2*7 points using a KTS(2*7+1). 

# 

# Note that the triples of points equal to {x,x',\infty} will be added 

# several times. 

# 

# As all those subdesigns are resolvable, each class of the KTS(n) is 

# obtained by considering a set {x,x',\infty} and all sets of all 

# parallel classes of the subdesign which contain this set. 

 

# We create the small KTS(n') we need, and relabel them such that 

# 01(n'-1),23(n'-1),... are blocks of the design. 

gdd4 = kirkman_triple_system(9) 

gdd7 = kirkman_triple_system(15) 

 

X = [B for B in gdd4 if 8 in B] 

for b in X: 

b.remove(8) 

X = sum(X, []) + [8] 

gdd4.relabel({v:i for i,v in enumerate(X)}) 

gdd4 = gdd4.is_resolvable(True)[1] # the relabeled classes 

 

X = [B for B in gdd7 if 14 in B] 

for b in X: 

b.remove(14) 

X = sum(X, []) + [14] 

gdd7.relabel({v:i for i,v in enumerate(X)}) 

gdd7 = gdd7.is_resolvable(True)[1] # the relabeled classes 

 

# The first parallel class contains 01(n'-1), the second contains 

# 23(n'-1), etc.. 

# Then remove the blocks containing (n'-1) 

for B in gdd4: 

for i,b in enumerate(B): 

if 8 in b: j = min(b); del B[i]; B.insert(0,j); break 

gdd4.sort() 

for B in gdd4: 

B.pop(0) 

 

for B in gdd7: 

for i,b in enumerate(B): 

if 14 in b: j = min(b); del B[i]; B.insert(0,j); break 

gdd7.sort() 

for B in gdd7: 

B.pop(0) 

 

# Pasting the KTS(n') without {x,x',\infty} blocks 

classes = [[] for i in range((v-1) // 2)] 

gdd = {4:gdd4, 7: gdd7} 

for B in PBD_4_7((v-1)//2,check=False): 

for i,classs in enumerate(gdd[len(B)]): 

classes[B[i]].extend([[2*B[x//2]+x%2 for x in BB] for BB in classs]) 

 

# The {x,x',\infty} blocks 

for i,classs in enumerate(classes): 

classs.append([2*i,2*i+1,v-1]) 

 

KTS = BalancedIncompleteBlockDesign(v, 

blocks = [tr for cl in classes for tr in cl], 

k=3, 

lambd=1, 

check=True, 

copy =False) 

KTS._classes = classes 

assert KTS.is_resolvable() 

 

return KTS 

 

def v_4_1_rbibd(v,existence=False): 

r""" 

Return a `(v,4,1)`-RBIBD. 

 

INPUT: 

 

- `n` (integer) 

 

- ``existence`` (boolean; ``False`` by default) -- whether to build the 

design or only answer whether it exists. 

 

.. SEEALSO:: 

 

- :meth:`IncidenceStructure.is_resolvable` 

- :func:`resolvable_balanced_incomplete_block_design` 

 

.. NOTE:: 

 

A resolvable `(v,4,1)`-BIBD exists whenever `1\equiv 4\pmod(12)`. This 

function, however, only implements a construction of `(v,4,1)`-BIBD such 

that `v=3q+1\equiv 1\pmod{3}` where `q` is a prime power (see VII.7.5.a 

from [BJL99]_). 

 

EXAMPLES:: 

 

sage: rBIBD = designs.resolvable_balanced_incomplete_block_design(28,4) 

sage: rBIBD.is_resolvable() 

True 

sage: rBIBD.is_t_design(return_parameters=True) 

(True, (2, 28, 4, 1)) 

 

TESTS:: 

 

sage: for q in prime_powers(2,30): 

....: if (3*q+1)%12 == 4: 

....: _ = designs.resolvable_balanced_incomplete_block_design(3*q+1,4) # indirect doctest 

""" 

# Volume 1, VII.7.5.a from [BJL99]_ 

if v%3 != 1 or not is_prime_power((v-1)//3): 

if existence: 

return Unknown 

raise NotImplementedError("I don't know how to build a ({},{},1)-RBIBD!".format(v,4)) 

from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF 

q = (v-1)//3 

nn = (q-1)//4 

G = GF(q,'x') 

w = G.primitive_element() 

e = w**(nn) 

assert e**2 == -1 

 

first_class = [[(w**i,j),(-w**i,j),(e*w**i,j+1),(-e*w**i,j+1)] 

for i in range(nn) for j in range(3)] 

 

first_class.append([(0,0),(0,1),(0,2),'inf']) 

 

label = {p:i for i,p in enumerate(G)} 

 

classes = [[[v-1 if x=='inf' else (x[1]%3)*q+label[x[0]+g] for x in S] 

for S in first_class] 

for g in G] 

 

BIBD = BalancedIncompleteBlockDesign(v, 

blocks = sum(classes,[]), 

k=4, 

check=True, 

copy=False) 

BIBD._classes = classes 

assert BIBD.is_resolvable() 

return BIBD 

 

def PBD_4_7(v,check=True, existence=False): 

r""" 

Return a `(v,\{4,7\})`-PBD 

 

For all `v` such that `n\equiv 1\pmod{3}` and `n\neq 10,19, 31` there exists 

a `(v,\{4,7\})`-PBD. This is proved in Proposition IX.4.5 from [BJL99]_, 

which this method implements. 

 

This construction of PBD is used by the construction of Kirkman Triple 

Systems. 

 

EXAMPLES:: 

 

sage: from sage.combinat.designs.resolvable_bibd import PBD_4_7 

sage: PBD_4_7(22) 

Pairwise Balanced Design on 22 points with sets of sizes in set([4, 7]) 

 

TESTS: 

 

All values `\leq 300`:: 

 

sage: for i in range(1,300,3): 

....: if i not in [10,19,31]: 

....: assert PBD_4_7(i,existence=True) 

....: _ = PBD_4_7(i,check=True) 

""" 

if v%3 != 1 or v in [10,19,31]: 

if existence: 

return Unknown 

raise NotImplementedError 

if existence: 

return True 

 

from .group_divisible_designs import GroupDivisibleDesign 

from .group_divisible_designs import GDD_4_2 

from .bibd import PairwiseBalancedDesign 

from .bibd import balanced_incomplete_block_design 

 

if v == 22: 

# Beth/Jungnickel/Lenz: take KTS(15) and extend each of the 7 classes 

# with a new point. Make those new points a 7-set. 

KTS15 = kirkman_triple_system(15) 

blocks = [S+[i+15] for i,classs in enumerate(KTS15._classes) for S in classs]+[list(range(15, 22))] 

 

elif v == 34: 

# [BJL99] (p527,vol1), but originally Brouwer 

A = [(0,0),(1,1),(2,0),(4,1)] 

B = [(0,0),(1,0),(4,2)] 

C = [(0,0),(2,2),(5,0)] 

D = [(0,0),(0,1),(0,2)] 

 

A = [[(x+i, y+j) for x,y in A] for i in range(9) for j in range(3)] 

B = [[(x+i, y+i+j) for x,y in B]+[27+j] for i in range(9) for j in range(3)] 

C = [[(x+i+j,y+2*i+j) for x,y in C]+[30+j] for i in range(9) for j in range(3)] 

D = [[(x+i, y+i) for x,y in D]+[33] for i in range(9)] 

 

blocks = [[int(x) if not isinstance(x,tuple) else (x[1]%3)*9+(x[0]%9) for x in S] 

for S in A+B+C+D+[list(range(27,34))]] 

elif v == 46: 

# [BJL99] (p527,vol1), but originally Brouwer 

A = [(1,0),(3,0),(9,0),(0,1)] 

B = [(2,0),(6,0),(5,0),(0,1)] 

C = [(0,0),(1,1),(4,2)] 

D = [(0,0),(2,1),(7,2)] 

E = [(0,0),(0,1),(0,2)] 

 

A = [[(x+i, y+j) for x,y in A] for i in range(13) for j in range(3)] 

B = [[(x+i, y+j) for x,y in B] for i in range(13) for j in range(3)] 

C = [[(x+i, y+j) for x,y in C]+[39+j] for i in range(13) for j in range(3)] 

D = [[(x+i, y+j) for x,y in D]+[42+j] for i in range(13) for j in range(3)] 

E = [[(x+i, y+i) for x,y in E]+[45] for i in range(13)] 

 

blocks = [[int(x) if not isinstance(x,tuple) else (x[1]%3)*13+(x[0]%13) for x in S] 

for S in A+B+C+D+E+[list(range(39, 46))]] 

 

elif v == 58: 

# [BJL99] (p527,vol1), but originally Brouwer 

A = [(0,0),(1,0),(4,0),( 5,1)] 

B = [(0,0),(2,0),(8,0),(11,1)] 

C = [(0,0),(5,0),(2,1),(12,1)] 

D = [(0,0),(8,1),(7,2)] 

E = [(0,0),(6,1),(4,2)] 

F = [(0,0),(0,1),(0,2)] 

 

A = [[(x+i, y+j) for x,y in A] for i in range(17) for j in range(3)] 

B = [[(x+i, y+j) for x,y in B] for i in range(17) for j in range(3)] 

C = [[(x+i, y+j) for x,y in C] for i in range(17) for j in range(3)] 

D = [[(x+i, y+j) for x,y in D]+[51+j] for i in range(17) for j in range(3)] 

E = [[(x+i, y+j) for x,y in E]+[54+j] for i in range(17) for j in range(3)] 

F = [[(x+i, y+i) for x,y in F]+[57] for i in range(17)] 

 

blocks = [[int(x) if not isinstance(x,tuple) else (x[1]%3)*17+(x[0]%17) for x in S] 

for S in A+B+C+D+E+F+[list(range(51,58))]] 

 

elif v == 70: 

# [BJL99] (p527,vol1), but originally Brouwer 

A = [(0,0),(1,0),(5,1),(13,1)] 

B = [(0,0),(4,0),(20,1),(10,1)] 

C = [(0,0),(16,0),(17,1),(19,1)] 

D = [(0,0),(2,1),(8,1),(11,1)] 

E = [(0,0),(3,2),(9,1)] 

F = [(0,0),(7,0),(14,1)] 

H = [(0,0),(0,1),(0,2)] 

 

A = [[(x+i, y+j) for x,y in A] for i in range(21) for j in range(3)] 

B = [[(x+i, y+j) for x,y in B] for i in range(21) for j in range(3)] 

C = [[(x+i, y+j) for x,y in C] for i in range(21) for j in range(3)] 

D = [[(x+i, y+j) for x,y in D] for i in range(21) for j in range(3)] 

E = [[(x+i, y+j) for x,y in E]+[63+j] for i in range(21) for j in range(3)] 

F = [[(x+3*i+j, y+ii+j) for x,y in F]+[66+j] for i in range( 7) for j in range(3) for ii in range(3)] 

H = [[(x+i, y+i) for x,y in H]+[69] for i in range(21)] 

 

blocks = [[int(x) if not isinstance(x,tuple) else (x[1]%3)*21+(x[0]%21) 

for x in S] 

for S in A+B+C+D+E+F+H+[list(range(63,70))]] 

 

elif v == 82: 

# This construction is Theorem IX.3.16 from [BJL99] (p.627). 

# 

# A (15,{4},{3})-GDD from a (16,4)-BIBD 

from .group_divisible_designs import group_divisible_design 

from .orthogonal_arrays import transversal_design 

GDD = group_divisible_design(3*5,K=[4],G=[3],check=False) 

TD = transversal_design(5,5) 

 

# A (75,{4},{15})-GDD 

GDD2 = [[3*B[x//3]+x%3 for x in BB] for B in TD for BB in GDD] 

 

# We now complete the (75,{4},{15})-GDD into a (82,{4,7})-PBD. For this, 

# we add 7 new points that are added to all groups of size 15. 

# 

# On these groups a (15+7,{4,7})-PBD is pasted, in such a way that the 7 

# new points are a set of the final PBD 

PBD22 = PBD_4_7(15+7) 

S = next(SS for SS in PBD22 if len(SS) == 7) # a set of size 7 

PBD22.relabel({v:i for i,v in enumerate([i for i in range(15+7) if i not in S] + S)}) 

 

for B in PBD22: 

if B == S: 

continue 

for i in range(5): 

GDD2.append([x+i*15 if x<15 else x+60 for x in B]) 

 

GDD2.append(list(range(75,82))) 

blocks = GDD2 

 

elif v == 94: 

# IX.4.5.l from [BJL99]. 

# 

# take 4 parallel lines from an affine plane of order 7, and a 5th 

# one. This is a (31,{4,5,7})-BIBD. And 94=3*31+1. 

from sage.combinat.designs.block_design import AffineGeometryDesign 

AF = AffineGeometryDesign(2,1,7) 

parall = [] 

plus_one = None 

for S in AF: 

if all(all(x not in SS for x in S) for SS in parall): 

parall.append(S) 

elif plus_one is None: 

plus_one = S 

if len(parall) == 4 and plus_one is not None: 

break 

X = set(sum(parall,plus_one)) 

 

S_4_5_7 = [X.intersection(S) for S in AF] 

S_4_5_7 = [S for S in S_4_5_7 if len(S)>1] 

S_4_5_7 = PairwiseBalancedDesign(X, 

blocks = S_4_5_7, 

K = [4,5,7], 

check=False) 

S_4_5_7.relabel() 

return PBD_4_7_from_Y(S_4_5_7,check=check) 

 

elif v == 127 or v == 142: 

# IX.4.5.o from [BJL99]. 

# 

# Attach two or seven infinite points to a (40,4)-RBIBD to get a 

# (42,{4,5},{1,2,7})-GDD or a (47,{4,5},{1,2,7})-GDD 

points_to_add = 2 if v == 127 else 7 

rBIBD4 = v_4_1_rbibd(40) 

GDD = [S+[40+i] if i<points_to_add else S 

for i,classs in enumerate(rBIBD4._classes) 

for S in classs] 

if points_to_add == 7: 

GDD.append(list(range(40, 40 + points_to_add))) 

groups = [[x] for x in range(40+points_to_add)] 

else: 

groups = [[x] for x in range(40)] 

groups.append(list(range(40,40+points_to_add))) 

GDD = GroupDivisibleDesign(40+points_to_add, 

groups = groups, 

blocks = GDD, 

K = [2,4,5,7], 

check = False, 

copy = False) 

 

return PBD_4_7_from_Y(GDD,check=check) 

 

elif v % 6 == 1 and GDD_4_2((v - 1) // 6, existence=True): 

# VII.5.17 from [BJL99] 

gdd = GDD_4_2((v - 1) // 6) 

return PBD_4_7_from_Y(gdd, check=check) 

 

elif v == 202: 

# IV.4.5.p from [BJL99] 

PBD = PBD_4_7(22,check=False) 

PBD = PBD_4_7_from_Y(PBD,check=False) 

return PBD_4_7_from_Y(PBD,check=check) 

 

elif balanced_incomplete_block_design(v,4,existence=True): 

return balanced_incomplete_block_design(v,4) 

elif balanced_incomplete_block_design(v,7,existence=True): 

return balanced_incomplete_block_design(v,7) 

else: 

from sage.combinat.designs.orthogonal_arrays import orthogonal_array 

# IX.4.5.m from [BJL99]. 

# 

# This construction takes a TD(5,g) and truncates its last column to 

# size u: it yields a (4g+u,{4,5},{g,u})-GDD. If there exists a 

# (3g+1,{4,7})-PBD and a (3u+1,{4,7})-PBD, then we can apply the x->3x+1 

# construction on the truncated transversal design (which is a GDD). 

# 

# We write vv = 4g+u while satisfying the hypotheses. 

vv = (v - 1) // 3 

for g in range((vv + 5 - 1) // 5, vv // 4 + 1): 

u = vv-4*g 

if (orthogonal_array(5,g,existence=True) and 

PBD_4_7(3*g+1,existence=True) and 

PBD_4_7(3*u+1,existence=True)): 

from .orthogonal_arrays import transversal_design 

domain = set(range(vv)) 

GDD = transversal_design(5,g) 

GDD = GroupDivisibleDesign(vv, 

groups = [[x for x in gr if x in domain] for gr in GDD.groups()], 

blocks = [[x for x in B if x in domain] for B in GDD], 

G = set([g,u]), 

K = [4,5], 

check=False) 

return PBD_4_7_from_Y(GDD,check=check) 

 

return PairwiseBalancedDesign(v, 

blocks = blocks, 

K = [4,7], 

check = check, 

copy = False) 

 

def PBD_4_7_from_Y(gdd,check=True): 

r""" 

Return a `(3v+1,\{4,7\})`-PBD from a `(v,\{4,5,7\},\NN-\{3,6,10\})`-GDD. 

 

This implements Lemma IX.3.11 from [BJL99]_ (p.625). All points of the GDD 

are tripled, and a `+\infty` point is added to the design. 

 

- A group of size `s\in Y=\NN-\{3,6,10\}` becomes a set of size `3s`. Adding 

`\infty` to it gives it size `3s+1`, and this set is then replaced by a 

`(3s+1,\{4,7\})`-PBD. 

 

- A block of size `s\in\{4,5,7\}` becomes a `(3s,\{4,7\},\{3\})`-GDD. 

 

This lemma is part of the existence proof of `(v,\{4,7\})`-PBD as explained 

in IX.4.5 from [BJL99]_). 

 

INPUT: 

 

- ``gdd`` -- a `(v,\{4,5,7\},Y)`-GDD where `Y=\NN-\{3,6,10\}`. 

 

- ``check`` -- (boolean) Whether to check that output is correct before 

returning it. As this is expected to be useless (but we are cautious 

guys), you may want to disable it whenever you want speed. Set to ``True`` 

by default. 

 

EXAMPLES:: 

 

sage: from sage.combinat.designs.resolvable_bibd import PBD_4_7_from_Y 

sage: PBD_4_7_from_Y(designs.transversal_design(7,8)) 

Pairwise Balanced Design on 169 points with sets of sizes in set([4, 7]) 

 

TESTS:: 

 

sage: PBD_4_7_from_Y(designs.balanced_incomplete_block_design(10,10)) 

Traceback (most recent call last): 

... 

ValueError: The GDD should only contain blocks of size {4,5,7} but there are other: set([10]) 

sage: PBD_4_7_from_Y(designs.transversal_design(4,3)) 

Traceback (most recent call last): 

... 

RuntimeError: A group has size 3 but I do not know how to build a (10,[4,7])-PBD 

""" 

from .group_divisible_designs import group_divisible_design 

from .bibd import PairwiseBalancedDesign 

block_sizes = set(map(len,gdd._blocks)) 

group_sizes = set(map(len,gdd._groups)) 

if not block_sizes.issubset([4,5,7]): 

raise ValueError("The GDD should only contain blocks of size {{4,5,7}} " 

"but there are other: {}".format(block_sizes.difference([4,5,7]))) 

 

for gs in group_sizes: 

if not PBD_4_7(3*gs+1,existence=True): 

raise RuntimeError("A group has size {} but I do not know how to " 

"build a ({},[4,7])-PBD".format(gs,3*gs+1)) 

 

GDD = {} # the GDD we will need 

if 4 in block_sizes: 

#GDD[4] = GDD_from_BIBD(3*4,4) 

GDD[4] = group_divisible_design(3*4,K=[4],G=[3]) 

if 5 in block_sizes: 

#GDD[5] = GDD_from_BIBD(3*5,4) 

GDD[5] = group_divisible_design(3*5,K=[4],G=[3]) 

if 7 in block_sizes: 

# It is obtained from a PBD_4_7(22) by removing a point only contained 

# in sets of size 4 

GDD[7] = PBD_4_7(22) 

x = set(range(22)).difference(*[S for S in GDD[7] if len(S) != 4]).pop() 

relabel = sum((S for S in GDD[7] if x in S),[]) # the groups must be 012,345,... 

relabel = [xx for xx in relabel if xx != x]+[x] 

GDD[7].relabel({v:i for i,v in enumerate(relabel)}) 

GDD[7] = [S for S in GDD[7] if 21 not in S] 

 

PBD = [] 

 

# The blocks 

for B in gdd: 

for B_GDD in GDD[len(B)]: 

PBD.append([3*B[x//3]+(x%3) for x in B_GDD]) 

 

# The groups 

group_PBD = {gs:PBD_4_7(3*gs+1) for gs in group_sizes} 

for G in gdd.groups(): 

gs = len(G) 

for B in group_PBD[gs]: 

PBD.append([3*G[x//3]+(x%3) if x < 3*gs else 3*gdd.num_points() 

for x in B]) 

 

return PairwiseBalancedDesign(3*gdd.num_points()+1, 

blocks = PBD, 

K = [4,7], 

check = check, 

copy = False)