Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

# -*- coding: utf-8 -*- 

r""" 

Free Pre-Lie Algebras 

 

AUTHORS: 

 

- Florent Hivert, Frédéric Chapoton (2011) 

""" 

 

#***************************************************************************** 

# Copyright (C) 2010-2015 Florent Hivert <Florent.Hivert@lri.fr>, 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from six import iteritems 

 

from sage.categories.magmatic_algebras import MagmaticAlgebras 

from sage.categories.lie_algebras import LieAlgebras 

from sage.categories.magmas import Magmas 

from sage.categories.pushout import (ConstructionFunctor, 

CompositeConstructionFunctor, 

IdentityConstructionFunctor) 

from sage.categories.rings import Rings 

from sage.categories.functor import Functor 

 

from sage.combinat.free_module import CombinatorialFreeModule 

from sage.combinat.words.alphabet import Alphabet 

from sage.combinat.rooted_tree import (RootedTrees, RootedTree, 

LabelledRootedTrees, 

LabelledRootedTree) 

 

from sage.misc.lazy_import import lazy_import 

from sage.misc.lazy_attribute import lazy_attribute 

from sage.misc.cachefunc import cached_method 

 

from sage.sets.family import Family 

lazy_import('sage.structure.parent', 'CoercionException') 

 

 

class FreePreLieAlgebra(CombinatorialFreeModule): 

r""" 

The free pre-Lie algebra. 

 

Pre-Lie algebras are non-associative algebras, where the product `*` 

satisfies 

 

.. MATH:: 

 

(x * y) * z - x * (y * z) = (x * z) * y - x * (z * y). 

 

We use here the convention where the associator 

 

.. MATH:: 

 

(x, y, z) := (x * y) * z - x * (y * z) 

 

is symmetric in its two rightmost arguments. This is sometimes called 

a right pre-Lie algebra. 

 

They have appeared in numerical analysis and deformation theory. 

 

The free Pre-Lie algebra on a given set `E` has an explicit 

description using rooted trees, just as the free associative algebra 

can be described using words. The underlying vector space has a basis 

indexed by finite rooted trees endowed with a map from their vertices 

to `E`. In this basis, the product of two (decorated) rooted trees `S 

* T` is the sum over vertices of `S` of the rooted tree obtained by 

adding one edge from the root of `T` to the given vertex of `S`. The 

root of these trees is taken to be the root of `S`. The free pre-Lie 

algebra can also be considered as the free algebra over the PreLie operad. 

 

.. WARNING:: 

 

The usual binary operator ``*`` can be used for the pre-Lie product. 

Beware that it but must be parenthesized properly, as the pre-Lie 

product is not associative. By default, a multiple product will be 

taken with left parentheses. 

 

EXAMPLES:: 

 

sage: F = algebras.FreePreLie(ZZ, 'xyz') 

sage: x,y,z = F.gens() 

sage: (x * y) * z 

B[x[y[z[]]]] + B[x[y[], z[]]] 

sage: (x * y) * z - x * (y * z) == (x * z) * y - x * (z * y) 

True 

 

The free pre-Lie algebra is non-associative:: 

 

sage: x * (y * z) == (x * y) * z 

False 

 

The default product is with left parentheses:: 

 

sage: x * y * z == (x * y) * z 

True 

sage: x * y * z * x == ((x * y) * z) * x 

True 

 

The NAP product as defined in [Liv2006]_ is also implemented on the same 

vector space:: 

 

sage: N = F.nap_product 

sage: N(x*y,z*z) 

B[x[y[], z[z[]]]] 

 

When ``None`` is given as input, unlabelled trees are used instead:: 

 

sage: F1 = algebras.FreePreLie(QQ, None) 

sage: w = F1.gen(0); w 

B[[]] 

sage: w * w * w * w 

B[[[[[]]]]] + B[[[[], []]]] + 3*B[[[], [[]]]] + B[[[], [], []]] 

 

However, it is equally possible to use labelled trees instead:: 

 

sage: F1 = algebras.FreePreLie(QQ, 'q') 

sage: w = F1.gen(0); w 

B[q[]] 

sage: w * w * w * w 

B[q[q[q[q[]]]]] + B[q[q[q[], q[]]]] + 3*B[q[q[], q[q[]]]] + B[q[q[], q[], q[]]] 

 

The set `E` can be infinite:: 

 

sage: F = algebras.FreePreLie(QQ, ZZ) 

sage: w = F.gen(1); w 

B[1[]] 

sage: x = F.gen(2); x 

B[-1[]] 

sage: y = F.gen(3); y 

B[2[]] 

sage: w*x 

B[1[-1[]]] 

sage: (w*x)*y 

B[1[-1[2[]]]] + B[1[-1[], 2[]]] 

sage: w*(x*y) 

B[1[-1[2[]]]] 

 

.. NOTE:: 

 

Variables names can be ``None``, a list of strings, a string 

or an integer. When ``None`` is given, unlabelled rooted 

trees are used. When a single string is given, each letter is taken 

as a variable. See 

:func:`sage.combinat.words.alphabet.build_alphabet`. 

 

.. WARNING:: 

 

Beware that the underlying combinatorial free module is based 

either on ``RootedTrees`` or on ``LabelledRootedTrees``, with no 

restriction on the labellings. This means that all code calling 

the :meth:`basis` method would not give meaningful results, since 

:meth:`basis` returns many "chaff" elements that do not belong to 

the algebra. 

 

REFERENCES: 

 

- [ChLi]_ 

 

- [Liv2006]_ 

""" 

@staticmethod 

def __classcall_private__(cls, R, names=None): 

""" 

Normalize input to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: F1 = algebras.FreePreLie(QQ, 'xyz') 

sage: F2 = algebras.FreePreLie(QQ, 'x,y,z') 

sage: F3 = algebras.FreePreLie(QQ, ['x','y','z']) 

sage: F4 = algebras.FreePreLie(QQ, Alphabet('xyz')) 

sage: F1 is F2 and F1 is F3 and F1 is F4 

True 

""" 

if names is not None: 

if ',' in names: 

names = [u for u in names if u != ','] 

names = Alphabet(names) 

 

if R not in Rings(): 

raise TypeError("argument R must be a ring") 

 

return super(FreePreLieAlgebra, cls).__classcall__(cls, R, names) 

 

def __init__(self, R, names=None): 

""" 

Initialize ``self``. 

 

TESTS:: 

 

sage: A = algebras.FreePreLie(QQ, '@'); A 

Free PreLie algebra on one generator ['@'] over Rational Field 

sage: TestSuite(A).run() 

 

sage: A = algebras.FreePreLie(QQ, None); A 

Free PreLie algebra on one generator ['o'] over Rational Field 

 

sage: F = algebras.FreePreLie(QQ, 'xy') 

sage: TestSuite(F).run() # long time 

""" 

if names is None: 

Trees = RootedTrees() 

key = RootedTree.sort_key 

self._alphabet = Alphabet(['o']) 

else: 

Trees = LabelledRootedTrees() 

key = LabelledRootedTree.sort_key 

self._alphabet = names 

# Here one would need LabelledRootedTrees(names) 

# so that one can restrict the labels to some fixed set 

 

cat = MagmaticAlgebras(R).WithBasis().Graded() & LieAlgebras(R).WithBasis().Graded() 

CombinatorialFreeModule.__init__(self, R, Trees, 

latex_prefix="", 

sorting_key=key, 

category=cat) 

 

def variable_names(self): 

r""" 

Return the names of the variables. 

 

EXAMPLES:: 

 

sage: R = algebras.FreePreLie(QQ, 'xy') 

sage: R.variable_names() 

{'x', 'y'} 

 

sage: R = algebras.FreePreLie(QQ, None) 

sage: R.variable_names() 

{'o'} 

""" 

return self._alphabet 

 

def _repr_(self): 

""" 

Return the string representation of ``self``. 

 

EXAMPLES:: 

 

sage: algebras.FreePreLie(QQ, '@') # indirect doctest 

Free PreLie algebra on one generator ['@'] over Rational Field 

""" 

n = self.algebra_generators().cardinality() 

if n == 1: 

gen = "one generator" 

else: 

gen = "{} generators".format(n) 

s = "Free PreLie algebra on {} {} over {}" 

try: 

return s.format(gen, self._alphabet.list(), self.base_ring()) 

except NotImplementedError: 

return s.format(gen, self._alphabet, self.base_ring()) 

 

def gen(self, i): 

r""" 

Return the ``i``-th generator of the algebra. 

 

INPUT: 

 

- ``i`` -- an integer 

 

EXAMPLES:: 

 

sage: F = algebras.FreePreLie(ZZ, 'xyz') 

sage: F.gen(0) 

B[x[]] 

 

sage: F.gen(4) 

Traceback (most recent call last): 

... 

IndexError: argument i (= 4) must be between 0 and 2 

""" 

G = self.algebra_generators() 

n = G.cardinality() 

if i < 0 or not i < n: 

m = "argument i (= {}) must be between 0 and {}".format(i, n - 1) 

raise IndexError(m) 

return G[G.keys().unrank(i)] 

 

@cached_method 

def algebra_generators(self): 

r""" 

Return the generators of this algebra. 

 

These are the rooted trees with just one vertex. 

 

EXAMPLES:: 

 

sage: A = algebras.FreePreLie(ZZ, 'fgh'); A 

Free PreLie algebra on 3 generators ['f', 'g', 'h'] 

over Integer Ring 

sage: list(A.algebra_generators()) 

[B[f[]], B[g[]], B[h[]]] 

 

sage: A = algebras.FreePreLie(QQ, ['x1','x2']) 

sage: list(A.algebra_generators()) 

[B[x1[]], B[x2[]]] 

""" 

Trees = self.basis().keys() 

return Family(self._alphabet, lambda a: self.monomial(Trees([], a))) 

 

def change_ring(self, R): 

""" 

Return the free pre-Lie algebra in the same variables over `R`. 

 

INPUT: 

 

- `R` -- a ring 

 

EXAMPLES:: 

 

sage: A = algebras.FreePreLie(ZZ, 'fgh') 

sage: A.change_ring(QQ) 

Free PreLie algebra on 3 generators ['f', 'g', 'h'] over 

Rational Field 

""" 

return FreePreLieAlgebra(R, names=self.variable_names()) 

 

def gens(self): 

""" 

Return the generators of ``self`` (as an algebra). 

 

EXAMPLES:: 

 

sage: A = algebras.FreePreLie(ZZ, 'fgh') 

sage: A.gens() 

(B[f[]], B[g[]], B[h[]]) 

""" 

return tuple(self.algebra_generators()) 

 

def degree_on_basis(self, t): 

""" 

Return the degree of a rooted tree in the free Pre-Lie algebra. 

 

This is the number of vertices. 

 

EXAMPLES:: 

 

sage: A = algebras.FreePreLie(QQ, None) 

sage: RT = A.basis().keys() 

sage: A.degree_on_basis(RT([RT([])])) 

2 

""" 

return t.node_number() 

 

@cached_method 

def an_element(self): 

""" 

Return an element of ``self``. 

 

EXAMPLES:: 

 

sage: A = algebras.FreePreLie(QQ, 'xy') 

sage: A.an_element() 

B[x[x[x[x[]]]]] + B[x[x[], x[x[]]]] 

""" 

o = self.gen(0) 

return (o * o) * (o * o) 

 

def some_elements(self): 

""" 

Return some elements of the free pre-Lie algebra. 

 

EXAMPLES:: 

 

sage: A = algebras.FreePreLie(QQ, None) 

sage: A.some_elements() 

[B[[]], B[[[]]], B[[[[[]]]]] + B[[[], [[]]]], B[[[[]]]] + B[[[], []]], B[[[]]]] 

 

With several generators:: 

 

sage: A = algebras.FreePreLie(QQ, 'xy') 

sage: A.some_elements() 

[B[x[]], 

B[x[x[]]], 

B[x[x[x[x[]]]]] + B[x[x[], x[x[]]]], 

B[x[x[x[]]]] + B[x[x[], x[]]], 

B[x[x[y[]]]] + B[x[x[], y[]]]] 

""" 

o = self.gen(0) 

x = o * o 

y = o 

G = self.algebra_generators() 

# Take only the first 3 generators, otherwise the final element is too big 

if G.cardinality() < 3: 

for w in G: 

y = y * w 

else: 

K = G.keys() 

for i in range(3): 

y = y * G[K.unrank(i)] 

return [o, x, x * x, x * o, y] 

 

def product_on_basis(self, x, y): 

""" 

Return the pre-Lie product of two trees. 

 

This is the sum over all graftings of the root of `y` over a vertex 

of `x`. The root of the resulting trees is the root of `x`. 

 

.. SEEALSO:: 

 

:meth:`pre_Lie_product` 

 

EXAMPLES:: 

 

sage: A = algebras.FreePreLie(QQ, None) 

sage: RT = A.basis().keys() 

sage: x = RT([RT([])]) 

sage: A.product_on_basis(x, x) 

B[[[[[]]]]] + B[[[], [[]]]] 

""" 

return self.sum(self.basis()[u] for u in x.graft_list(y)) 

 

pre_Lie_product_on_basis = product_on_basis 

 

@lazy_attribute 

def pre_Lie_product(self): 

""" 

Return the pre-Lie product. 

 

.. SEEALSO:: 

 

:meth:`pre_Lie_product_on_basis` 

 

EXAMPLES:: 

 

sage: A = algebras.FreePreLie(QQ, None) 

sage: RT = A.basis().keys() 

sage: x = A(RT([RT([])])) 

sage: A.pre_Lie_product(x, x) 

B[[[[[]]]]] + B[[[], [[]]]] 

""" 

plb = self.pre_Lie_product_on_basis 

return self._module_morphism(self._module_morphism(plb, position=0, 

codomain=self), 

position=1) 

 

def bracket_on_basis(self, x, y): 

r""" 

Return the Lie bracket of two trees. 

 

This is the commutator `[x, y] = x * y - y * x` of the pre-Lie product. 

 

.. SEEALSO:: 

 

:meth:`pre_Lie_product_on_basis` 

 

EXAMPLES:: 

 

sage: A = algebras.FreePreLie(QQ, None) 

sage: RT = A.basis().keys() 

sage: x = RT([RT([])]) 

sage: y = RT([x]) 

sage: A.bracket_on_basis(x, y) 

-B[[[[], [[]]]]] + B[[[], [[[]]]]] - B[[[[]], [[]]]] 

""" 

return self.product_on_basis(x, y) - self.product_on_basis(y, x) 

 

def nap_product_on_basis(self, x, y): 

""" 

Return the NAP product of two trees. 

 

This is the grafting of the root of `y` over the root 

of `x`. The root of the resulting tree is the root of `x`. 

 

.. SEEALSO:: 

 

:meth:`nap_product` 

 

EXAMPLES:: 

 

sage: A = algebras.FreePreLie(QQ, None) 

sage: RT = A.basis().keys() 

sage: x = RT([RT([])]) 

sage: A.nap_product_on_basis(x, x) 

B[[[], [[]]]] 

""" 

return self.basis()[x.graft_on_root(y)] 

 

@lazy_attribute 

def nap_product(self): 

""" 

Return the NAP product. 

 

.. SEEALSO:: 

 

:meth:`nap_product_on_basis` 

 

EXAMPLES:: 

 

sage: A = algebras.FreePreLie(QQ, None) 

sage: RT = A.basis().keys() 

sage: x = A(RT([RT([])])) 

sage: A.nap_product(x, x) 

B[[[], [[]]]] 

""" 

npb = self.nap_product_on_basis 

return self._module_morphism(self._module_morphism(npb, 

position=0, 

codomain=self), 

position=1) 

 

def _element_constructor_(self, x): 

r""" 

Convert ``x`` into ``self``. 

 

EXAMPLES:: 

 

sage: R = algebras.FreePreLie(QQ, 'xy') 

sage: x, y = R.gens() 

sage: R(x) 

B[x[]] 

sage: R(x+4*y) 

B[x[]] + 4*B[y[]] 

 

sage: Trees = R.basis().keys() 

sage: R(Trees([],'x')) 

B[x[]] 

sage: D = algebras.FreePreLie(ZZ, 'xy') 

sage: X, Y = D.gens() 

sage: R(X-Y).parent() 

Free PreLie algebra on 2 generators ['x', 'y'] over Rational Field 

 

TESTS:: 

 

sage: R.<x,y> = algebras.FreePreLie(QQ) 

sage: S.<z> = algebras.FreePreLie(GF(3)) 

sage: R(z) 

Traceback (most recent call last): 

... 

TypeError: not able to convert this to this algebra 

""" 

if (isinstance(x, (RootedTree, LabelledRootedTree)) and 

x in self.basis().keys()): 

return self.monomial(x) 

try: 

P = x.parent() 

if isinstance(P, FreePreLieAlgebra): 

if P is self: 

return x 

if self._coerce_map_from_(P): 

return self.element_class(self, x.monomial_coefficients()) 

except AttributeError: 

raise TypeError('not able to convert this to this algebra') 

else: 

raise TypeError('not able to convert this to this algebra') 

# Ok, not a pre-Lie algebra element (or should not be viewed as one). 

 

def _coerce_map_from_(self, R): 

r""" 

Return ``True`` if there is a coercion from ``R`` into ``self`` 

and ``False`` otherwise. 

 

The things that coerce into ``self`` are 

 

- free pre-Lie algebras whose set `E` of labels is 

a subset of the corresponding self of ``set`, and whose base 

ring has a coercion map into ``self.base_ring()`` 

 

EXAMPLES:: 

 

sage: F = algebras.FreePreLie(GF(7), 'xyz'); F 

Free PreLie algebra on 3 generators ['x', 'y', 'z'] 

over Finite Field of size 7 

 

Elements of the free pre-Lie algebra canonically coerce in:: 

 

sage: x, y, z = F.gens() 

sage: F.coerce(x+y) == x+y 

True 

 

The free pre-Lie algebra over `\ZZ` on `x, y, z` coerces in, since 

`\ZZ` coerces to `\GF{7}`:: 

 

sage: G = algebras.FreePreLie(ZZ, 'xyz') 

sage: Gx,Gy,Gz = G.gens() 

sage: z = F.coerce(Gx+Gy); z 

B[x[]] + B[y[]] 

sage: z.parent() is F 

True 

 

However, `\GF{7}` does not coerce to `\ZZ`, so the free pre-Lie 

algebra over `\GF{7}` does not coerce to the one over `\ZZ`:: 

 

sage: G.coerce(y) 

Traceback (most recent call last): 

... 

TypeError: no canonical coercion from Free PreLie algebra 

on 3 generators ['x', 'y', 'z'] over Finite Field of size 

7 to Free PreLie algebra on 3 generators ['x', 'y', 'z'] 

over Integer Ring 

 

TESTS:: 

 

sage: F = algebras.FreePreLie(ZZ, 'xyz') 

sage: G = algebras.FreePreLie(QQ, 'xyz') 

sage: H = algebras.FreePreLie(ZZ, 'y') 

sage: F._coerce_map_from_(G) 

False 

sage: G._coerce_map_from_(F) 

True 

sage: F._coerce_map_from_(H) 

True 

sage: F._coerce_map_from_(QQ) 

False 

sage: G._coerce_map_from_(QQ) 

False 

sage: F.has_coerce_map_from(PolynomialRing(ZZ, 3, 'x,y,z')) 

False 

""" 

# free prelie algebras in a subset of variables 

# over any base that coerces in: 

if isinstance(R, FreePreLieAlgebra): 

if all(x in self.variable_names() for x in R.variable_names()): 

if self.base_ring().has_coerce_map_from(R.base_ring()): 

return True 

return False 

 

def construction(self): 

""" 

Return a pair ``(F, R)``, where ``F`` is a :class:`PreLieFunctor` 

and `R` is a ring, such that ``F(R)`` returns ``self``. 

 

EXAMPLES:: 

 

sage: P = algebras.FreePreLie(ZZ, 'x,y') 

sage: x,y = P.gens() 

sage: F, R = P.construction() 

sage: F 

PreLie[x,y] 

sage: R 

Integer Ring 

sage: F(ZZ) is P 

True 

sage: F(QQ) 

Free PreLie algebra on 2 generators ['x', 'y'] over Rational Field 

""" 

return PreLieFunctor(self.variable_names()), self.base_ring() 

 

 

class PreLieFunctor(ConstructionFunctor): 

""" 

A constructor for pre-Lie algebras. 

 

EXAMPLES:: 

 

sage: P = algebras.FreePreLie(ZZ, 'x,y') 

sage: x,y = P.gens() 

sage: F = P.construction()[0]; F 

PreLie[x,y] 

 

sage: A = GF(5)['a,b'] 

sage: a, b = A.gens() 

sage: F(A) 

Free PreLie algebra on 2 generators ['x', 'y'] over Multivariate Polynomial Ring in a, b over Finite Field of size 5 

 

sage: f = A.hom([a+b,a-b],A) 

sage: F(f) 

Generic endomorphism of Free PreLie algebra on 2 generators ['x', 'y'] 

over Multivariate Polynomial Ring in a, b over Finite Field of size 5 

 

sage: F(f)(a * F(A)(x)) 

(a+b)*B[x[]] 

""" 

rank = 9 

 

def __init__(self, vars): 

""" 

EXAMPLES:: 

 

sage: F = sage.combinat.free_prelie_algebra.PreLieFunctor(['x','y']) 

sage: F 

PreLie[x,y] 

sage: F(ZZ) 

Free PreLie algebra on 2 generators ['x', 'y'] over Integer Ring 

""" 

Functor.__init__(self, Rings(), Magmas()) 

self.vars = vars 

 

def _apply_functor(self, R): 

""" 

Apply the functor to an object of ``self``'s domain. 

 

EXAMPLES:: 

 

sage: R = algebras.FreePreLie(ZZ, 'x,y,z') 

sage: F = R.construction()[0]; F 

PreLie[x,y,z] 

sage: type(F) 

<class 'sage.combinat.free_prelie_algebra.PreLieFunctor'> 

sage: F(ZZ) # indirect doctest 

Free PreLie algebra on 3 generators ['x', 'y', 'z'] over Integer Ring 

""" 

return FreePreLieAlgebra(R, self.vars) 

 

def _apply_functor_to_morphism(self, f): 

""" 

Apply the functor ``self`` to the ring morphism `f`. 

 

TESTS:: 

 

sage: R = algebras.FreePreLie(ZZ, 'x').construction()[0] 

sage: R(ZZ.hom(GF(3))) # indirect doctest 

Generic morphism: 

From: Free PreLie algebra on one generator ['x'] over Integer Ring 

To: Free PreLie algebra on one generator ['x'] over Finite Field of size 3 

""" 

dom = self(f.domain()) 

codom = self(f.codomain()) 

 

def action(x): 

return codom._from_dict({a: f(b) 

for a, b in iteritems(x.monomial_coefficients())}) 

return dom.module_morphism(function=action, codomain=codom) 

 

def __eq__(self, other): 

""" 

EXAMPLES:: 

 

sage: F = algebras.FreePreLie(ZZ, 'x,y,z').construction()[0] 

sage: G = algebras.FreePreLie(QQ, 'x,y,z').construction()[0] 

sage: F == G 

True 

sage: G == loads(dumps(G)) 

True 

sage: G = algebras.FreePreLie(QQ, 'x,y').construction()[0] 

sage: F == G 

False 

""" 

if not isinstance(other, PreLieFunctor): 

return False 

return self.vars == other.vars 

 

def __mul__(self, other): 

""" 

If two PreLie functors are given in a row, form a single PreLie functor 

with all of the variables. 

 

EXAMPLES:: 

 

sage: F = sage.combinat.free_prelie_algebra.PreLieFunctor(['x','y']) 

sage: G = sage.combinat.free_prelie_algebra.PreLieFunctor(['t']) 

sage: G * F 

PreLie[x,y,t] 

""" 

if isinstance(other, IdentityConstructionFunctor): 

return self 

if isinstance(other, PreLieFunctor): 

if set(self.vars).intersection(other.vars): 

raise CoercionException("Overlapping variables (%s,%s)" % 

(self.vars, other.vars)) 

return PreLieFunctor(other.vars + self.vars) 

elif (isinstance(other, CompositeConstructionFunctor) and 

isinstance(other.all[-1], PreLieFunctor)): 

return CompositeConstructionFunctor(other.all[:-1], 

self * other.all[-1]) 

else: 

return CompositeConstructionFunctor(other, self) 

 

def merge(self, other): 

""" 

Merge ``self`` with another construction functor, or return None. 

 

EXAMPLES:: 

 

sage: F = sage.combinat.free_prelie_algebra.PreLieFunctor(['x','y']) 

sage: G = sage.combinat.free_prelie_algebra.PreLieFunctor(['t']) 

sage: F.merge(G) 

PreLie[x,y,t] 

sage: F.merge(F) 

PreLie[x,y] 

 

Now some actual use cases:: 

 

sage: R = algebras.FreePreLie(ZZ, 'xyz') 

sage: x,y,z = R.gens() 

sage: 1/2 * x 

1/2*B[x[]] 

sage: parent(1/2 * x) 

Free PreLie algebra on 3 generators ['x', 'y', 'z'] over Rational Field 

 

sage: S = algebras.FreePreLie(QQ, 'zt') 

sage: z,t = S.gens() 

sage: x + t 

B[t[]] + B[x[]] 

sage: parent(x + t) 

Free PreLie algebra on 4 generators ['z', 't', 'x', 'y'] over Rational Field 

""" 

if isinstance(other, PreLieFunctor): 

if self.vars == other.vars: 

return self 

ret = list(self.vars) 

cur_vars = set(ret) 

for v in other.vars: 

if v not in cur_vars: 

ret.append(v) 

return PreLieFunctor(Alphabet(ret)) 

else: 

return None 

 

def _repr_(self): 

""" 

TESTS:: 

 

sage: algebras.FreePreLie(QQ,'x,y,z,t').construction()[0] 

PreLie[x,y,z,t] 

""" 

return "PreLie[%s]" % ','.join(self.vars)