Coverage for local/lib/python2.7/site-packages/sage/combinat/ncsym/ncsym.py : 74%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
""" Symmetric Functions in Non-Commuting Variables
AUTHORS:
- Travis Scrimshaw (08-04-2013): Initial version """ #***************************************************************************** # Copyright (C) 2013 Travis Scrimshaw <tscrim at ucdavis.edu> # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #***************************************************************************** from six.moves import range
from sage.misc.cachefunc import cached_method #from sage.misc.lazy_attribute import lazy_attribute from sage.misc.misc_c import prod from sage.structure.parent import Parent from sage.structure.unique_representation import UniqueRepresentation from sage.categories.graded_hopf_algebras import GradedHopfAlgebras from sage.categories.rings import Rings from sage.categories.fields import Fields
from sage.functions.other import factorial from sage.combinat.free_module import CombinatorialFreeModule from sage.combinat.ncsym.bases import NCSymBases, MultiplicativeNCSymBases, NCSymBasis_abstract from sage.combinat.set_partition import SetPartitions from sage.combinat.set_partition_ordered import OrderedSetPartitions from sage.combinat.posets.posets import Poset from sage.combinat.sf.sf import SymmetricFunctions from sage.matrix.matrix_space import MatrixSpace from sage.sets.set import Set from sage.rings.all import ZZ from functools import reduce
def matchings(A, B): """ Iterate through all matchings of the sets `A` and `B`.
EXAMPLES::
sage: from sage.combinat.ncsym.ncsym import matchings sage: list(matchings([1, 2, 3], [-1, -2])) [[[1], [2], [3], [-1], [-2]], [[1], [2], [3, -1], [-2]], [[1], [2], [3, -2], [-1]], [[1], [2, -1], [3], [-2]], [[1], [2, -1], [3, -2]], [[1], [2, -2], [3], [-1]], [[1], [2, -2], [3, -1]], [[1, -1], [2], [3], [-2]], [[1, -1], [2], [3, -2]], [[1, -1], [2, -2], [3]], [[1, -2], [2], [3], [-1]], [[1, -2], [2], [3, -1]], [[1, -2], [2, -1], [3]]] """ # Handle corner cases else:
def nesting(la, nu): r""" Return the nesting number of ``la`` inside of ``nu``.
If we consider a set partition `A` as a set of arcs `i - j` where `i` and `j` are in the same part of `A`. Define
.. MATH::
\operatorname{nst}_{\lambda}^{\nu} = \#\{ i < j < k < l \mid i - l \in \nu, j - k \in \lambda \},
and this corresponds to the number of arcs of `\lambda` strictly contained inside of `\nu`.
EXAMPLES::
sage: from sage.combinat.ncsym.ncsym import nesting sage: nu = SetPartition([[1,4], [2], [3]]) sage: mu = SetPartition([[1,4], [2,3]]) sage: nesting(set(mu).difference(nu), nu) 1
::
sage: lst = list(SetPartitions(4)) sage: d = {} sage: for i, nu in enumerate(lst): ....: for mu in nu.coarsenings(): ....: if set(nu.arcs()).issubset(mu.arcs()): ....: d[i, lst.index(mu)] = nesting(set(mu).difference(nu), nu) sage: matrix(d) [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] """
class SymmetricFunctionsNonCommutingVariables(UniqueRepresentation, Parent): r""" Symmetric functions in non-commutative variables.
The ring of symmetric functions in non-commutative variables, which is not to be confused with the :class:`non-commutative symmetric functions<NonCommutativeSymmetricFunctions>`, is the ring of all bounded-degree noncommutative power series in countably many indeterminates (i.e., elements in `R \langle \langle x_1, x_2, x_3, \ldots \rangle \rangle` of bounded degree) which are invariant with respect to the action of the symmetric group `S_{\infty}` on the indices of the indeterminates. It can be regarded as a direct limit over all `n \to \infty` of rings of `S_n`-invariant polynomials in `n` non-commuting variables (that is, `S_n`-invariant elements of `R\langle x_1, x_2, \ldots, x_n \rangle`).
This ring is implemented as a Hopf algebra whose basis elements are indexed by set partitions.
Let `A = \{A_1, A_2, \ldots, A_r\}` be a set partition of the integers `\{ 1, 2, \ldots, k \}`. A monomial basis element indexed by `A` represents the sum of monomials `x_{i_1} x_{i_2} \cdots x_{i_k}` where `i_c = i_d` if and only if `c` and `d` are in the same part `A_i` for some `i`.
The `k`-th graded component of the ring of symmetric functions in non-commutative variables has its dimension equal to the number of set partitions of `k`. (If we work, instead, with finitely many -- say, `n` -- variables, then its dimension is equal to the number of set partitions of `k` where the number of parts is at most `n`.)
.. NOTE::
All set partitions are considered standard, a set partition of `[n]` for some `n`, unless otherwise stated.
REFERENCES:
.. [BZ05] \N. Bergeron, M. Zabrocki. *The Hopf algebra of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree*. (2005). :arxiv:`math/0509265v3`.
.. [BHRZ06] \N. Bergeron, C. Hohlweg, M. Rosas, M. Zabrocki. *Grothendieck bialgebras, partition lattices, and symmetric functions in noncommutative variables*. Electronic Journal of Combinatorics. **13** (2006).
.. [RS06] \M. Rosas, B. Sagan. *Symmetric functions in noncommuting variables*. Trans. Amer. Math. Soc. **358** (2006). no. 1, 215-232. :arxiv:`math/0208168`.
.. [BRRZ08] \N. Bergeron, C. Reutenauer, M. Rosas, M. Zabrocki. *Invariants and coinvariants of the symmetric group in noncommuting variables*. Canad. J. Math. **60** (2008). 266-296. :arxiv:`math/0502082`
.. [BT13] \N. Bergeron, N. Thiem. *A supercharacter table decomposition via power-sum symmetric functions*. Int. J. Algebra Comput. **23**, 763 (2013). :doi:`10.1142/S0218196713400171`. :arxiv:`1112.4901`.
EXAMPLES:
We begin by first creating the ring of `NCSym` and the bases that are analogues of the usual symmetric functions::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: m = NCSym.m() sage: e = NCSym.e() sage: h = NCSym.h() sage: p = NCSym.p() sage: m Symmetric functions in non-commuting variables over the Rational Field in the monomial basis
The basis is indexed by set partitions, so we create a few elements and convert them between these bases::
sage: elt = m(SetPartition([[1,3],[2]])) - 2*m(SetPartition([[1],[2]])); elt -2*m{{1}, {2}} + m{{1, 3}, {2}} sage: e(elt) 1/2*e{{1}, {2, 3}} - 2*e{{1, 2}} + 1/2*e{{1, 2}, {3}} - 1/2*e{{1, 2, 3}} - 1/2*e{{1, 3}, {2}} sage: h(elt) -4*h{{1}, {2}} - 2*h{{1}, {2}, {3}} + 1/2*h{{1}, {2, 3}} + 2*h{{1, 2}} + 1/2*h{{1, 2}, {3}} - 1/2*h{{1, 2, 3}} + 3/2*h{{1, 3}, {2}} sage: p(elt) -2*p{{1}, {2}} + 2*p{{1, 2}} - p{{1, 2, 3}} + p{{1, 3}, {2}} sage: m(p(elt)) -2*m{{1}, {2}} + m{{1, 3}, {2}}
sage: elt = p(SetPartition([[1,3],[2]])) - 4*p(SetPartition([[1],[2]])) + 2; elt 2*p{} - 4*p{{1}, {2}} + p{{1, 3}, {2}} sage: e(elt) 2*e{} - 4*e{{1}, {2}} + e{{1}, {2}, {3}} - e{{1, 3}, {2}} sage: m(elt) 2*m{} - 4*m{{1}, {2}} - 4*m{{1, 2}} + m{{1, 2, 3}} + m{{1, 3}, {2}} sage: h(elt) 2*h{} - 4*h{{1}, {2}} - h{{1}, {2}, {3}} + h{{1, 3}, {2}} sage: p(m(elt)) 2*p{} - 4*p{{1}, {2}} + p{{1, 3}, {2}}
There is also a shorthand for creating elements. We note that we must use ``p[[]]`` to create the empty set partition due to python's syntax. ::
sage: eltm = m[[1,3],[2]] - 3*m[[1],[2]]; eltm -3*m{{1}, {2}} + m{{1, 3}, {2}} sage: elte = e[[1,3],[2]]; elte e{{1, 3}, {2}} sage: elth = h[[1,3],[2,4]]; elth h{{1, 3}, {2, 4}} sage: eltp = p[[1,3],[2,4]] + 2*p[[1]] - 4*p[[]]; eltp -4*p{} + 2*p{{1}} + p{{1, 3}, {2, 4}}
There is also a natural projection to the usual symmetric functions by letting the variables commute. This projection map preserves the product and coproduct structure. We check that Theorem 2.1 of [RS06]_ holds::
sage: Sym = SymmetricFunctions(QQ) sage: Sm = Sym.m() sage: Se = Sym.e() sage: Sh = Sym.h() sage: Sp = Sym.p() sage: eltm.to_symmetric_function() -6*m[1, 1] + m[2, 1] sage: Sm(p(eltm).to_symmetric_function()) -6*m[1, 1] + m[2, 1] sage: elte.to_symmetric_function() 2*e[2, 1] sage: Se(h(elte).to_symmetric_function()) 2*e[2, 1] sage: elth.to_symmetric_function() 4*h[2, 2] sage: Sh(m(elth).to_symmetric_function()) 4*h[2, 2] sage: eltp.to_symmetric_function() -4*p[] + 2*p[1] + p[2, 2] sage: Sp(e(eltp).to_symmetric_function()) -4*p[] + 2*p[1] + p[2, 2] """ def __init__(self, R): """ Initialize ``self``.
EXAMPLES::
sage: NCSym1 = SymmetricFunctionsNonCommutingVariables(FiniteField(23)) sage: NCSym2 = SymmetricFunctionsNonCommutingVariables(Integers(23)) sage: TestSuite(SymmetricFunctionsNonCommutingVariables(QQ)).run() """ # change the line below to assert(R in Rings()) once MRO issues from #15536, #15475 are resolved
def _repr_(self): r""" EXAMPLES::
sage: SymmetricFunctionsNonCommutingVariables(ZZ) Symmetric functions in non-commuting variables over the Integer Ring """
def a_realization(self): r""" Return the realization of the powersum basis of ``self``.
OUTPUT:
- The powersum basis of symmetric functions in non-commuting variables.
EXAMPLES::
sage: SymmetricFunctionsNonCommutingVariables(QQ).a_realization() Symmetric functions in non-commuting variables over the Rational Field in the powersum basis """
_shorthands = tuple(['chi', 'cp', 'm', 'e', 'h', 'p', 'rho', 'x'])
def dual(self): r""" Return the dual Hopf algebra of the symmetric functions in non-commuting variables.
EXAMPLES::
sage: SymmetricFunctionsNonCommutingVariables(QQ).dual() Dual symmetric functions in non-commuting variables over the Rational Field """
class monomial(NCSymBasis_abstract): r""" The Hopf algebra of symmetric functions in non-commuting variables in the monomial basis.
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: m = NCSym.m() sage: m[[1,3],[2]]*m[[1,2]] m{{1, 3}, {2}, {4, 5}} + m{{1, 3}, {2, 4, 5}} + m{{1, 3, 4, 5}, {2}} sage: m[[1,3],[2]].coproduct() m{} # m{{1, 3}, {2}} + m{{1}} # m{{1, 2}} + m{{1, 2}} # m{{1}} + m{{1, 3}, {2}} # m{} """ def __init__(self, NCSym): """ EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: TestSuite(NCSym.m()).run() """ prefix='m', bracket=False, category=NCSymBases(NCSym))
@cached_method def _m_to_p_on_basis(self, A): r""" Return `\mathbf{m}_A` in terms of the powersum basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the powersum basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: m = NCSym.m() sage: all(m(m._m_to_p_on_basis(A)) == m[A] for i in range(5) ....: for A in SetPartitions(i)) True """
@cached_method def _m_to_cp_on_basis(self, A): r""" Return `\mathbf{m}_A` in terms of the `\mathbf{cp}` basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the `\mathbf{cp}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: m = NCSym.m() sage: all(m(m._m_to_cp_on_basis(A)) == m[A] for i in range(5) ....: for A in SetPartitions(i)) True """ for B in A.coarsenings() if arcs.issubset(B.arcs())}, remove_zeros=False)
def from_symmetric_function(self, f): """ Return the image of the symmetric function ``f`` in ``self``.
This is performed by converting to the monomial basis and extending the method :meth:`sum_of_partitions` linearly. This is a linear map from the symmetric functions to the symmetric functions in non-commuting variables that does not preserve the product or coproduct structure of the Hopf algebra.
.. SEEALSO:: :meth:`~Element.to_symmetric_function`
INPUT:
- ``f`` -- an element of the symmetric functions
OUTPUT:
- An element of the `\mathbf{m}` basis
EXAMPLES::
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m() sage: mon = SymmetricFunctions(QQ).m() sage: elt = m.from_symmetric_function(mon[2,1,1]); elt 1/12*m{{1}, {2}, {3, 4}} + 1/12*m{{1}, {2, 3}, {4}} + 1/12*m{{1}, {2, 4}, {3}} + 1/12*m{{1, 2}, {3}, {4}} + 1/12*m{{1, 3}, {2}, {4}} + 1/12*m{{1, 4}, {2}, {3}} sage: elt.to_symmetric_function() m[2, 1, 1] sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e() sage: elm = SymmetricFunctions(QQ).e() sage: e(m.from_symmetric_function(elm[4])) 1/24*e{{1, 2, 3, 4}} sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h() sage: hom = SymmetricFunctions(QQ).h() sage: h(m.from_symmetric_function(hom[4])) 1/24*h{{1, 2, 3, 4}} sage: p = SymmetricFunctionsNonCommutingVariables(QQ).p() sage: pow = SymmetricFunctions(QQ).p() sage: p(m.from_symmetric_function(pow[4])) p{{1, 2, 3, 4}} sage: p(m.from_symmetric_function(pow[2,1])) 1/3*p{{1}, {2, 3}} + 1/3*p{{1, 2}, {3}} + 1/3*p{{1, 3}, {2}} sage: p([[1,2]])*p([[1]]) p{{1, 2}, {3}}
Check that `\chi \circ \widetilde{\chi}` is the identity on `Sym`::
sage: all(m.from_symmetric_function(pow(la)).to_symmetric_function() == pow(la) ....: for la in Partitions(4)) True """
def dual_basis(self): r""" Return the dual basis to the monomial basis.
OUTPUT:
- the `\mathbf{w}` basis of the dual Hopf algebra
EXAMPLES::
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m() sage: m.dual_basis() Dual symmetric functions in non-commuting variables over the Rational Field in the w basis """
def duality_pairing(self, x, y): r""" Compute the pairing between an element of ``self`` and an element of the dual.
INPUT:
- ``x`` -- an element of symmetric functions in non-commuting variables - ``y`` -- an element of the dual of symmetric functions in non-commuting variables
OUTPUT:
- an element of the base ring of ``self``
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: m = NCSym.m() sage: w = m.dual_basis() sage: matrix([[m(A).duality_pairing(w(B)) for A in SetPartitions(3)] for B in SetPartitions(3)]) [1 0 0 0 0] [0 1 0 0 0] [0 0 1 0 0] [0 0 0 1 0] [0 0 0 0 1] sage: (m[[1,2],[3]] + 3*m[[1,3],[2]]).duality_pairing(2*w[[1,3],[2]] + w[[1,2,3]] + 2*w[[1,2],[3]]) 8 """
def product_on_basis(self, A, B): r""" The product on monomial basis elements.
The product of the basis elements indexed by two set partitions `A` and `B` is the sum of the basis elements indexed by set partitions `C` such that `C \wedge ([n] | [k]) = A | B` where `n = |A|` and `k = |B|`. Here `A \wedge B` is the infimum of `A` and `B` and `A | B` is the :meth:`SetPartition.pipe` operation. Equivalently we can describe all `C` as matchings between the partitions of `A` and `B` where if `a \in A` is matched with `b \in B`, we take `a \cup b` instead of `a` and `b` in `C`.
INPUT:
- ``A``, ``B`` -- set partitions
OUTPUT:
- an element of the `\mathbf{m}` basis
EXAMPLES::
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() sage: A = SetPartition([[1], [2,3]]) sage: B = SetPartition([[1], [3], [2,4]]) sage: m.product_on_basis(A, B) m{{1}, {2, 3}, {4}, {5, 7}, {6}} + m{{1}, {2, 3, 4}, {5, 7}, {6}} + m{{1}, {2, 3, 5, 7}, {4}, {6}} + m{{1}, {2, 3, 6}, {4}, {5, 7}} + m{{1, 4}, {2, 3}, {5, 7}, {6}} + m{{1, 4}, {2, 3, 5, 7}, {6}} + m{{1, 4}, {2, 3, 6}, {5, 7}} + m{{1, 5, 7}, {2, 3}, {4}, {6}} + m{{1, 5, 7}, {2, 3, 4}, {6}} + m{{1, 5, 7}, {2, 3, 6}, {4}} + m{{1, 6}, {2, 3}, {4}, {5, 7}} + m{{1, 6}, {2, 3, 4}, {5, 7}} + m{{1, 6}, {2, 3, 5, 7}, {4}} sage: B = SetPartition([[1], [2]]) sage: m.product_on_basis(A, B) m{{1}, {2, 3}, {4}, {5}} + m{{1}, {2, 3, 4}, {5}} + m{{1}, {2, 3, 5}, {4}} + m{{1, 4}, {2, 3}, {5}} + m{{1, 4}, {2, 3, 5}} + m{{1, 5}, {2, 3}, {4}} + m{{1, 5}, {2, 3, 4}} sage: m.product_on_basis(A, SetPartition([])) m{{1}, {2, 3}}
TESTS:
We check that we get all of the correct set partitions::
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() sage: A = SetPartition([[1], [2,3]]) sage: B = SetPartition([[1], [2]]) sage: S = SetPartition([[1,2,3], [4,5]]) sage: AB = SetPartition([[1], [2,3], [4], [5]]) sage: L = sorted(filter(lambda x: S.inf(x) == AB, SetPartitions(5)), key=str) sage: list(map(list, L)) == list(map(list, sorted(m.product_on_basis(A, B).support(), key=str))) True """
remove_zeros=False)
def coproduct_on_basis(self, A): r""" Return the coproduct of a monomial basis element.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- The coproduct applied to the monomial symmetric function in non-commuting variables indexed by ``A`` expressed in the monomial basis.
EXAMPLES::
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() sage: m[[1, 3], [2]].coproduct() m{} # m{{1, 3}, {2}} + m{{1}} # m{{1, 2}} + m{{1, 2}} # m{{1}} + m{{1, 3}, {2}} # m{} sage: m.coproduct_on_basis(SetPartition([])) m{} # m{} sage: m.coproduct_on_basis(SetPartition([[1,2,3]])) m{} # m{{1, 2, 3}} + m{{1, 2, 3}} # m{} sage: m[[1,5],[2,4],[3,7],[6]].coproduct() m{} # m{{1, 5}, {2, 4}, {3, 7}, {6}} + m{{1}} # m{{1, 5}, {2, 4}, {3, 6}} + 2*m{{1, 2}} # m{{1, 3}, {2, 5}, {4}} + m{{1, 2}} # m{{1, 4}, {2, 3}, {5}} + 2*m{{1, 2}, {3}} # m{{1, 3}, {2, 4}} + m{{1, 3}, {2}} # m{{1, 4}, {2, 3}} + 2*m{{1, 3}, {2, 4}} # m{{1, 2}, {3}} + 2*m{{1, 3}, {2, 5}, {4}} # m{{1, 2}} + m{{1, 4}, {2, 3}} # m{{1, 3}, {2}} + m{{1, 4}, {2, 3}, {5}} # m{{1, 2}} + m{{1, 5}, {2, 4}, {3, 6}} # m{{1}} + m{{1, 5}, {2, 4}, {3, 7}, {6}} # m{} """ # Handle corner cases
else:
def internal_coproduct_on_basis(self, A): r""" Return the internal coproduct of a monomial basis element.
The internal coproduct is defined by
.. MATH::
\Delta^{\odot}(\mathbf{m}_A) = \sum_{B \wedge C = A} \mathbf{m}_B \otimes \mathbf{m}_C
where we sum over all pairs of set partitions `B` and `C` whose infimum is `A`.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- an element of the tensor square of the `\mathbf{m}` basis
EXAMPLES::
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() sage: m.internal_coproduct_on_basis(SetPartition([[1,3],[2]])) m{{1, 2, 3}} # m{{1, 3}, {2}} + m{{1, 3}, {2}} # m{{1, 2, 3}} + m{{1, 3}, {2}} # m{{1, 3}, {2}} """
def sum_of_partitions(self, la): r""" Return the sum over all set partitions whose shape is ``la`` with a fixed coefficient `C` defined below.
Fix a partition `\lambda`, we define `\lambda! := \prod_i \lambda_i!` and `\lambda^! := \prod_i m_i!`. Recall that `|\lambda| = \sum_i \lambda_i` and `m_i` is the number of parts of length `i` of `\lambda`. Thus we defined the coefficient as
.. MATH::
C := \frac{\lambda! \lambda^!}{|\lambda|!}.
Hence we can define a lift `\widetilde{\chi}` from `Sym` to `NCSym` by
.. MATH::
m_{\lambda} \mapsto C \sum_A \mathbf{m}_A
where the sum is over all set partitions whose shape is `\lambda`.
INPUT:
- ``la`` -- an integer partition
OUTPUT:
- an element of the `\mathbf{m}` basis
EXAMPLES::
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m() sage: m.sum_of_partitions(Partition([2,1,1])) 1/12*m{{1}, {2}, {3, 4}} + 1/12*m{{1}, {2, 3}, {4}} + 1/12*m{{1}, {2, 4}, {3}} + 1/12*m{{1, 2}, {3}, {4}} + 1/12*m{{1, 3}, {2}, {4}} + 1/12*m{{1, 4}, {2}, {3}}
TESTS:
Check that `\chi \circ \widetilde{\chi}` is the identity on `Sym`::
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m() sage: mon = SymmetricFunctions(QQ).monomial() sage: all(m.from_symmetric_function(mon[la]).to_symmetric_function() == mon[la] ....: for i in range(6) for la in Partitions(i)) True """ remove_zeros=False)
class Element(CombinatorialFreeModule.Element): """ An element in the monomial basis of `NCSym`. """ def expand(self, n, alphabet='x'): r""" Expand ``self`` written in the monomial basis in `n` non-commuting variables.
INPUT:
- ``n`` -- an integer - ``alphabet`` -- (default: ``'x'``) a string
OUTPUT:
- The symmetric function of ``self`` expressed in the ``n`` non-commuting variables described by ``alphabet``.
EXAMPLES::
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() sage: m[[1,3],[2]].expand(4) x0*x1*x0 + x0*x2*x0 + x0*x3*x0 + x1*x0*x1 + x1*x2*x1 + x1*x3*x1 + x2*x0*x2 + x2*x1*x2 + x2*x3*x2 + x3*x0*x3 + x3*x1*x3 + x3*x2*x3
One can use a different set of variables by using the optional argument ``alphabet``::
sage: m[[1],[2,3]].expand(3,alphabet='y') y0*y1^2 + y0*y2^2 + y1*y0^2 + y1*y2^2 + y2*y0^2 + y2*y1^2 """
for p in Permutations(n, len(A)) )
def to_symmetric_function(self): r""" The projection of ``self`` to the symmetric functions.
Take a symmetric function in non-commuting variables expressed in the `\mathbf{m}` basis, and return the projection of expressed in the monomial basis of symmetric functions.
The map `\chi \colon NCSym \to Sym` is defined by
.. MATH::
\mathbf{m}_A \mapsto m_{\lambda(A)} \prod_i n_i(\lambda(A))!
where `\lambda(A)` is the partition associated with `A` by taking the sizes of the parts and `n_i(\mu)` is the multiplicity of `i` in `\mu`.
OUTPUT:
- an element of the symmetric functions in the monomial basis
EXAMPLES::
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() sage: m[[1,3],[2]].to_symmetric_function() m[2, 1] sage: m[[1],[3],[2]].to_symmetric_function() 6*m[1, 1, 1] """ for (i, coeff) in self)
m = monomial
class elementary(NCSymBasis_abstract): r""" The Hopf algebra of symmetric functions in non-commuting variables in the elementary basis.
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: e = NCSym.e() """ def __init__(self, NCSym): """ EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: TestSuite(NCSym.e()).run() """ prefix='e', bracket=False, category=MultiplicativeNCSymBases(NCSym)) ## Register coercions # monomials # powersum # NOTE: Keep this ahead of creating the homogeneous basis to # get the coercion path m -> p -> e triangular="upper").register_as_coercion() triangular="upper").register_as_coercion() # homogeneous triangular="upper").register_as_coercion() triangular="upper").register_as_coercion()
@cached_method def _e_to_m_on_basis(self, A): r""" Return `\mathbf{e}_A` in terms of the monomial basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the `\mathbf{m}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: e = NCSym.e() sage: all(e(e._e_to_m_on_basis(A)) == e[A] for i in range(5) ....: for A in SetPartitions(i)) True """ remove_zeros=False)
@cached_method def _e_to_h_on_basis(self, A): r""" Return `\mathbf{e}_A` in terms of the homogeneous basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the `\mathbf{h}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: e = NCSym.e() sage: all(e(e._e_to_h_on_basis(A)) == e[A] for i in range(5) ....: for A in SetPartitions(i)) True """ remove_zeros=False)
@cached_method def _e_to_p_on_basis(self, A): r""" Return `\mathbf{e}_A` in terms of the powersum basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the `\mathbf{p}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: e = NCSym.e() sage: all(e(e._e_to_p_on_basis(A)) == e[A] for i in range(5) ....: for A in SetPartitions(i)) True """ remove_zeros=False)
class Element(CombinatorialFreeModule.Element): """ An element in the elementary basis of `NCSym`. """ def omega(self): r""" Return the involution `\omega` applied to ``self``.
The involution `\omega` on `NCSym` is defined by `\omega(\mathbf{e}_A) = \mathbf{h}_A`.
OUTPUT:
- an element in the basis ``self``
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: e = NCSym.e() sage: h = NCSym.h() sage: elt = e[[1,3],[2]].omega(); elt 2*e{{1}, {2}, {3}} - e{{1, 3}, {2}} sage: elt.omega() e{{1, 3}, {2}} sage: h(elt) h{{1, 3}, {2}} """
def to_symmetric_function(self): r""" The projection of ``self`` to the symmetric functions.
Take a symmetric function in non-commuting variables expressed in the `\mathbf{e}` basis, and return the projection of expressed in the elementary basis of symmetric functions.
The map `\chi \colon NCSym \to Sym` is given by
.. MATH::
\mathbf{e}_A \mapsto e_{\lambda(A)} \prod_i \lambda(A)_i!
where `\lambda(A)` is the partition associated with `A` by taking the sizes of the parts.
OUTPUT:
- An element of the symmetric functions in the elementary basis
EXAMPLES::
sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e() sage: e[[1,3],[2]].to_symmetric_function() 2*e[2, 1] sage: e[[1],[3],[2]].to_symmetric_function() e[1, 1, 1] """ for (i, coeff) in self)
e = elementary
class homogeneous(NCSymBasis_abstract): r""" The Hopf algebra of symmetric functions in non-commuting variables in the homogeneous basis.
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: h = NCSym.h() sage: h[[1,3],[2,4]]*h[[1,2,3]] h{{1, 3}, {2, 4}, {5, 6, 7}} sage: h[[1,2]].coproduct() h{} # h{{1, 2}} + 2*h{{1}} # h{{1}} + h{{1, 2}} # h{} """ def __init__(self, NCSym): """ EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: TestSuite(NCSym.h()).run() """ prefix='h', bracket=False, category=MultiplicativeNCSymBases(NCSym)) # Register coercions
@cached_method def _h_to_m_on_basis(self, A): r""" Return `\mathbf{h}_A` in terms of the monomial basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the `\mathbf{m}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: h = NCSym.h() sage: all(h(h._h_to_m_on_basis(A)) == h[A] for i in range(5) ....: for A in SetPartitions(i)) True """ for B in SetPartitions(A.size())}, remove_zeros=False)
@cached_method def _h_to_e_on_basis(self, A): r""" Return `\mathbf{h}_A` in terms of the elementary basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the `\mathbf{e}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: h = NCSym.h() sage: all(h(h._h_to_e_on_basis(A)) == h[A] for i in range(5) ....: for A in SetPartitions(i)) True """ for big in A)) remove_zeros=False)
@cached_method def _h_to_p_on_basis(self, A): r""" Return `\mathbf{h}_A` in terms of the powersum basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the `\mathbf{p}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: h = NCSym.h() sage: all(h(h._h_to_p_on_basis(A)) == h[A] for i in range(5) ....: for A in SetPartitions(i)) True """ remove_zeros=False)
class Element(CombinatorialFreeModule.Element): """ An element in the homogeneous basis of `NCSym`. """ def omega(self): r""" Return the involution `\omega` applied to ``self``.
The involution `\omega` on `NCSym` is defined by `\omega(\mathbf{h}_A) = \mathbf{e}_A`.
OUTPUT:
- an element in the basis ``self``
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: h = NCSym.h() sage: e = NCSym.e() sage: elt = h[[1,3],[2]].omega(); elt 2*h{{1}, {2}, {3}} - h{{1, 3}, {2}} sage: elt.omega() h{{1, 3}, {2}} sage: e(elt) e{{1, 3}, {2}} """
def to_symmetric_function(self): r""" The projection of ``self`` to the symmetric functions.
Take a symmetric function in non-commuting variables expressed in the `\mathbf{h}` basis, and return the projection of expressed in the complete basis of symmetric functions.
The map `\chi \colon NCSym \to Sym` is given by
.. MATH::
\mathbf{h}_A \mapsto h_{\lambda(A)} \prod_i \lambda(A)_i!
where `\lambda(A)` is the partition associated with `A` by taking the sizes of the parts.
OUTPUT:
- An element of the symmetric functions in the complete basis
EXAMPLES::
sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h() sage: h[[1,3],[2]].to_symmetric_function() 2*h[2, 1] sage: h[[1],[3],[2]].to_symmetric_function() h[1, 1, 1] """ for (i, coeff) in self)
h = homogeneous
class powersum(NCSymBasis_abstract): r""" The Hopf algebra of symmetric functions in non-commuting variables in the powersum basis.
The powersum basis is given by
.. MATH::
\mathbf{p}_A = \sum_{A \leq B} \mathbf{m}_B,
where we sum over all coarsenings of the set partition `A`. If we allow our variables to commute, then `\mathbf{p}_A` goes to the usual powersum symmetric function `p_{\lambda}` whose (integer) partition `\lambda` is the shape of `A`.
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: p = NCSym.p()
sage: x = p.an_element()**2; x 4*p{} + 8*p{{1}} + 4*p{{1}, {2}} + 6*p{{1}, {2, 3}} + 12*p{{1, 2}} + 6*p{{1, 2}, {3}} + 9*p{{1, 2}, {3, 4}} sage: x.to_symmetric_function() 4*p[] + 8*p[1] + 4*p[1, 1] + 12*p[2] + 12*p[2, 1] + 9*p[2, 2] """ def __init__(self, NCSym): """ EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: TestSuite(NCSym.p()).run() """ prefix='p', bracket=False, category=MultiplicativeNCSymBases(NCSym)) # Register coercions unitriangular="lower").register_as_coercion() unitriangular="lower").register_as_coercion() unitriangular="upper").register_as_coercion() unitriangular="upper").register_as_coercion()
@cached_method def _p_to_m_on_basis(self, A): """ Return `\mathbf{p}_A` in terms of the monomial basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the `\mathbf{m}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: p = NCSym.p() sage: all(p(p._p_to_m_on_basis(A)) == p[A] for i in range(5) ....: for A in SetPartitions(i)) True """
@cached_method def _p_to_e_on_basis(self, A): """ Return `\mathbf{p}_A` in terms of the elementary basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the `\mathbf{e}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: p = NCSym.p() sage: all(p(p._p_to_e_on_basis(A)) == p[A] for i in range(5) ....: for A in SetPartitions(i)) True """ for B in P_refine}, remove_zeros=False)
@cached_method def _p_to_h_on_basis(self, A): """ Return `\mathbf{p}_A` in terms of the homogeneous basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the `\mathbf{h}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: p = NCSym.p() sage: all(p(p._p_to_h_on_basis(A)) == p[A] for i in range(5) ....: for A in SetPartitions(i)) True """ for B in P_refine}, remove_zeros=False)
@cached_method def _p_to_x_on_basis(self, A): """ Return `\mathbf{p}_A` in terms of the `\mathbf{x}` basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- An element of the `\mathbf{x}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: p = NCSym.p() sage: all(p(p._p_to_x_on_basis(A)) == p[A] for i in range(5) ....: for A in SetPartitions(i)) True """
# Note that this is the same as the monomial coproduct_on_basis def coproduct_on_basis(self, A): r""" Return the coproduct of a monomial basis element.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- The coproduct applied to the monomial symmetric function in non-commuting variables indexed by ``A`` expressed in the monomial basis.
EXAMPLES::
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() sage: p[[1, 3], [2]].coproduct() p{} # p{{1, 3}, {2}} + p{{1}} # p{{1, 2}} + p{{1, 2}} # p{{1}} + p{{1, 3}, {2}} # p{} sage: p.coproduct_on_basis(SetPartition([[1]])) p{} # p{{1}} + p{{1}} # p{} sage: p.coproduct_on_basis(SetPartition([])) p{} # p{} """ # Handle corner cases
else:
def internal_coproduct_on_basis(self, A): """ Return the internal coproduct of a powersum basis element.
The internal coproduct is defined by
.. MATH::
\Delta^{\odot}(\mathbf{p}_A) = \mathbf{p}_A \otimes \mathbf{p}_A
INPUT:
- ``A`` -- a set partition
OUTPUT:
- an element of the tensor square of ``self``
EXAMPLES::
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() sage: p.internal_coproduct_on_basis(SetPartition([[1,3],[2]])) p{{1, 3}, {2}} # p{{1, 3}, {2}} """
def antipode_on_basis(self, A): r""" Return the result of the antipode applied to a powersum basis element.
Let `A` be a set partition. The antipode given in [LM2011]_ is
.. MATH::
S(\mathbf{p}_A) = \sum_{\gamma} (-1)^{\ell(\gamma)} \mathbf{p}_{\gamma[A]}
where we sum over all ordered set partitions (i.e. set compositions) of `[\ell(A)]` and
.. MATH::
\gamma[A] = A_{\gamma_1}^{\downarrow} | \cdots | A_{\gamma_{\ell(A)}}^{\downarrow}
is the action of `\gamma` on `A` defined in :meth:`SetPartition.ordered_set_partition_action()`.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- an element in the basis ``self``
EXAMPLES::
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() sage: p.antipode_on_basis(SetPartition([[1], [2,3]])) p{{1, 2}, {3}} sage: p.antipode_on_basis(SetPartition([])) p{} sage: F = p[[1,3],[5],[2,4]].coproduct() sage: F.apply_multilinear_morphism(lambda x,y: x.antipode()*y) 0 """ cur = 1 ret = [] for S in gamma: sub_parts = [list(A[i-1]) for i in S] # -1 for indexing mins = [min(p) for p in sub_parts] over_max = max([max(p) for p in sub_parts]) + 1 temp = [[] for i in range(len(S))] while min(mins) != over_max: m = min(mins) i = mins.index(m) temp[i].append(cur) cur += 1 sub_parts[i].pop(sub_parts[i].index(m)) if sub_parts[i]: mins[i] = min(sub_parts[i]) else: mins[i] = over_max ret += temp return P(ret) for gamma in OrderedSetPartitions(len(A)) )
def primitive(self, A, i=1): r""" Return the primitive associated to ``A`` in ``self``.
Fix some `i \in S`. Let `A` be an atomic set partition of `S`, then the primitive `p(A)` given in [LM2011]_ is
.. MATH::
p(A) = \sum_{\gamma} (-1)^{\ell(\gamma)-1} \mathbf{p}_{\gamma[A]}
where we sum over all ordered set partitions of `[\ell(A)]` such that `i \in \gamma_1` and `\gamma[A]` is the action of `\gamma` on `A` defined in :meth:`SetPartition.ordered_set_partition_action()`. If `A` is not atomic, then `p(A) = 0`.
.. SEEALSO:: :meth:`SetPartition.is_atomic`
INPUT:
- ``A`` -- a set partition - ``i`` -- (default: 1) index in the base set for ``A`` specifying which set of primitives this belongs to
OUTPUT:
- an element in the basis ``self``
EXAMPLES::
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() sage: elt = p.primitive(SetPartition([[1,3], [2]])); elt -p{{1, 2}, {3}} + p{{1, 3}, {2}} sage: elt.coproduct() -p{} # p{{1, 2}, {3}} + p{} # p{{1, 3}, {2}} - p{{1, 2}, {3}} # p{} + p{{1, 3}, {2}} # p{} sage: p.primitive(SetPartition([[1], [2,3]])) 0 sage: p.primitive(SetPartition([])) p{} """ for gamma in OrderedSetPartitions(len(A)) if i in gamma[0] )
class Element(CombinatorialFreeModule.Element): """ An element in the powersum basis of `NCSym`. """ def to_symmetric_function(self): r""" The projection of ``self`` to the symmetric functions.
Take a symmetric function in non-commuting variables expressed in the `\mathbf{p}` basis, and return the projection of expressed in the powersum basis of symmetric functions.
The map `\chi \colon NCSym \to Sym` is given by
.. MATH::
\mathbf{p}_A \mapsto p_{\lambda(A)}
where `\lambda(A)` is the partition associated with `A` by taking the sizes of the parts.
OUTPUT:
- an element of symmetric functions in the power sum basis
EXAMPLES::
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).p() sage: p[[1,3],[2]].to_symmetric_function() p[2, 1] sage: p[[1],[3],[2]].to_symmetric_function() p[1, 1, 1] """
p = powersum
class coarse_powersum(NCSymBasis_abstract): r""" The Hopf algebra of symmetric functions in non-commuting variables in the `\mathbf{cp}` basis.
This basis was defined in [BZ05]_ as
.. MATH::
\mathbf{cp}_A = \sum_{A \leq_* B} \mathbf{m}_B,
where we sum over all strict coarsenings of the set partition `A`. An alternative description of this basis was given in [BT13]_ as
.. MATH::
\mathbf{cp}_A = \sum_{A \subseteq B} \mathbf{m}_B,
where we sum over all set partitions whose arcs are a subset of the arcs of the set partition `A`.
.. NOTE::
In [BZ05]_, this basis was denoted by `\mathbf{q}`. In [BT13]_, this basis was called the powersum basis and denoted by `p`. However it is a coarser basis than the usual powersum basis in the sense that it does not yield the usual powersum basis of the symmetric function under the natural map of letting the variables commute.
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: cp = NCSym.cp() sage: cp[[1,3],[2,4]]*cp[[1,2,3]] cp{{1, 3}, {2, 4}, {5, 6, 7}} sage: cp[[1,2],[3]].internal_coproduct() cp{{1, 2}, {3}} # cp{{1, 2}, {3}} sage: ps = SymmetricFunctions(NCSym.base_ring()).p() sage: ps(cp[[1,3],[2]].to_symmetric_function()) p[2, 1] - p[3] sage: ps(cp[[1,2],[3]].to_symmetric_function()) p[2, 1] """ def __init__(self, NCSym): """ EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: TestSuite(NCSym.cp()).run() """ prefix='cp', bracket=False, category=MultiplicativeNCSymBases(NCSym)) # Register coercions unitriangular="lower").register_as_coercion() unitriangular="lower").register_as_coercion()
@cached_method def _cp_to_m_on_basis(self, A): """ Return `\mathbf{cp}_A` in terms of the monomial basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- an element of the `\mathbf{m}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: cp = NCSym.cp() sage: all(cp(cp._cp_to_m_on_basis(A)) == cp[A] for i in range(5) ....: for A in SetPartitions(i)) True """ remove_zeros=False)
cp = coarse_powersum
def q(self): """ Old name for the `\mathbf{cp}`-basis. Deprecated in :trac:`18371`.
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: NCSym.q() doctest:...: DeprecationWarning: q is deprecated, use instead cp or coarse_powersum. See http://trac.sagemath.org/18371 for details. Symmetric functions in non-commuting variables over the Rational Field in the coarse_powersum basis """
class x_basis(NCSymBasis_abstract): r""" The Hopf algebra of symmetric functions in non-commuting variables in the `\mathbf{x}` basis.
This basis is defined in [BHRZ06]_ by the formula:
.. MATH::
\mathbf{x}_A = \sum_{B \leq A} \mu(B, A) \mathbf{p}_B
and has the following properties:
.. MATH::
\mathbf{x}_A \mathbf{x}_B = \mathbf{x}_{A|B}, \quad \quad \Delta^{\odot}(\mathbf{x}_C) = \sum_{A \vee B = C} \mathbf{x}_A \otimes \mathbf{x}_B.
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: x = NCSym.x() sage: x[[1,3],[2,4]]*x[[1,2,3]] x{{1, 3}, {2, 4}, {5, 6, 7}} sage: x[[1,2],[3]].internal_coproduct() x{{1}, {2}, {3}} # x{{1, 2}, {3}} + x{{1, 2}, {3}} # x{{1}, {2}, {3}} + x{{1, 2}, {3}} # x{{1, 2}, {3}} """ def __init__(self, NCSym): """ EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: TestSuite(NCSym.x()).run() """ prefix='x', bracket=False, category=MultiplicativeNCSymBases(NCSym))
@cached_method def _x_to_p_on_basis(self, A): """ Return `\mathbf{x}_A` in terms of the powersum basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- an element of the `\mathbf{p}` basis
TESTS::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: x = NCSym.x() sage: all(x(x._x_to_p_on_basis(A)) == x[A] for i in range(5) ....: for A in SetPartitions(i)) True """
for B in P_refine})
x = x_basis
class deformed_coarse_powersum(NCSymBasis_abstract): r""" The Hopf algebra of symmetric functions in non-commuting variables in the `\rho` basis.
This basis was defined in [BT13]_ as a `q`-deformation of the `\mathbf{cp}` basis:
.. MATH::
\rho_A = \sum_{A \subseteq B} \frac{1}{q^{\operatorname{nst}_{B-A}^A}} \mathbf{m}_B,
where we sum over all set partitions whose arcs are a subset of the arcs of the set partition `A`.
INPUT:
- ``q`` -- (default: ``2``) the parameter `q`
EXAMPLES::
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: rho = NCSym.rho(q)
We construct Example 3.1 in [BT13]_::
sage: rnode = lambda A: sorted([a[1] for a in A.arcs()], reverse=True) sage: dimv = lambda A: sorted([a[1]-a[0] for a in A.arcs()], reverse=True) sage: lst = list(SetPartitions(4)) sage: S = sorted(lst, key=lambda A: (dimv(A), rnode(A))) sage: m = NCSym.m() sage: matrix([[m(rho[A])[B] for B in S] for A in S]) [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] [ 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0] [ 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1] [ 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0] [ 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0] [ 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0] [ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1/q] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1] """ def __init__(self, NCSym, q=2): """ EXAMPLES::
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: TestSuite(NCSym.rho(q)).run() """ prefix='rho', bracket=False, category=MultiplicativeNCSymBases(NCSym)) # Register coercions
def q(self): """ Return the deformation parameter `q` of ``self``.
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: rho = NCSym.rho(5) sage: rho.q() 5
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: rho = NCSym.rho(q) sage: rho.q() == q True """
@cached_method def _rho_to_m_on_basis(self, A): r""" Return `\rho_A` in terms of the monomial basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- an element of the `\mathbf{m}` basis
TESTS::
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: rho = NCSym.rho(q) sage: all(rho(rho._rho_to_m_on_basis(A)) == rho[A] for i in range(5) ....: for A in SetPartitions(i)) True """ for B in A.coarsenings() if arcs.issubset(B.arcs())}, remove_zeros=False)
@cached_method def _m_to_rho_on_basis(self, A): r""" Return `\mathbf{m}_A` in terms of the `\rho` basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- an element of the `\rho` basis
TESTS::
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: rho = NCSym.rho(q) sage: m = NCSym.m() sage: all(m(rho._m_to_rho_on_basis(A)) == m[A] for i in range(5) ....: for A in SetPartitions(i)) True """ / self._q**nesting(set(B).difference(A), B)) if arcs.issubset(B.arcs())}, remove_zeros=False)
rho = deformed_coarse_powersum
class supercharacter(NCSymBasis_abstract): r""" The Hopf algebra of symmetric functions in non-commuting variables in the supercharacter `\chi` basis.
This basis was defined in [BT13]_ as a `q`-deformation of the supercharacter basis.
.. MATH::
\chi_A = \sum_B \chi_A(B) \mathbf{m}_B,
where we sum over all set partitions `A` and `\chi_A(B)` is the evaluation of the supercharacter `\chi_A` on the superclass `\mu_B`.
.. NOTE::
The supercharacters considered in [BT13]_ are coarser than those considered by Aguiar et. al.
INPUT:
- ``q`` -- (default: ``2``) the parameter `q`
EXAMPLES::
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: chi = NCSym.chi(q) sage: chi[[1,3],[2]]*chi[[1,2]] chi{{1, 3}, {2}, {4, 5}} sage: chi[[1,3],[2]].coproduct() chi{} # chi{{1, 3}, {2}} + (2*q-2)*chi{{1}} # chi{{1}, {2}} + (3*q-2)*chi{{1}} # chi{{1, 2}} + (2*q-2)*chi{{1}, {2}} # chi{{1}} + (3*q-2)*chi{{1, 2}} # chi{{1}} + chi{{1, 3}, {2}} # chi{} sage: chi2 = NCSym.chi() sage: chi(chi2[[1,2],[3]]) ((-q+2)/q)*chi{{1}, {2}, {3}} + 2/q*chi{{1, 2}, {3}} sage: chi2 Symmetric functions in non-commuting variables over the Fraction Field of Univariate Polynomial Ring in q over Rational Field in the supercharacter basis with parameter q=2 """ def __init__(self, NCSym, q=2): """ EXAMPLES::
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: TestSuite(NCSym.chi(q)).run() """ prefix='chi', bracket=False, category=MultiplicativeNCSymBases(NCSym)) # Register coercions
def q(self): """ Return the deformation parameter `q` of ``self``.
EXAMPLES::
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: chi = NCSym.chi(5) sage: chi.q() 5
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: chi = NCSym.chi(q) sage: chi.q() == q True """
@cached_method def _chi_to_m_on_basis(self, A): r""" Return `\chi_A` in terms of the monomial basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- an element of the `\mathbf{m}` basis
TESTS::
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: chi = NCSym.chi(q) sage: all(chi(chi._chi_to_m_on_basis(A)) == chi[A] for i in range(5) ....: for A in SetPartitions(i)) True """ or (b[0] > a[0] and a[1] == b[1]) for a in arcs for b in Barcs): * (q - 1)**(len(arcs) - len(arcs.intersection(Barcs))) * q**(sum(a[1] - a[0] for a in arcs) - len(arcs)) / q**nesting(B, A))
@cached_method def _graded_inverse_matrix(self, n): r""" Return the inverse of the transition matrix of the ``n``-th graded part from the `\chi` basis to the monomial basis.
EXAMPLES::
sage: R = QQ['q'].fraction_field(); q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: chi = NCSym.chi(q); m = NCSym.m() sage: lst = list(SetPartitions(2)) sage: m = matrix([[m(chi[A])[B] for A in lst] for B in lst]); m [ -1 1] [q - 1 1] sage: chi._graded_inverse_matrix(2) [ -1/q 1/q] [(q - 1)/q 1/q] sage: chi._graded_inverse_matrix(2) * m [1 0] [0 1] """
@cached_method def _m_to_chi_on_basis(self, A): r""" Return `\mathbf{m}_A` in terms of the `\chi` basis.
INPUT:
- ``A`` -- a set partition
OUTPUT:
- an element of the `\chi` basis
TESTS::
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: chi = NCSym.chi(q) sage: m = NCSym.m() sage: all(m(chi._m_to_chi_on_basis(A)) == m[A] for i in range(5) ....: for A in SetPartitions(i)) True """
chi = supercharacter
|