Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

# The actual algorithm is implemented in the C++ file partitions_c.cc 

# which requires the GMP, MPFR and NTL libraries. 

# 

# distutils: libraries = gmp mpfr ntl 

# distutils: language = c++ 

""" 

Number of partitions of an integer 

  

AUTHOR: 

  

- William Stein (2007-07-28): initial version 

- Jonathan Bober (2007-07-28): wrote the program ``partitions_c.cc`` 

that does all the actual heavy lifting. 

""" 

  

#***************************************************************************** 

# Copyright (C) 2007 William Stein <wstein@gmail.com> 

# Copyright (C) 2007 Jonathan Bober <jwbober@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function, absolute_import 

  

import sys 

  

from cysignals.signals cimport sig_on, sig_off 

  

from sage.libs.gmp.types cimport mpz_t 

  

cdef extern from "partitions_c.cc": 

void part(mpz_t answer, unsigned int n) 

int test(bint longtest, bint forever) 

  

from sage.rings.integer cimport Integer 

  

def number_of_partitions(n): 

""" 

Returns the number of partitions of the integer `n`. 

  

EXAMPLES:: 

  

sage: from sage.combinat.partitions import number_of_partitions 

sage: number_of_partitions(0) 

1 

sage: number_of_partitions(1) 

1 

sage: number_of_partitions(2) 

2 

sage: number_of_partitions(3) 

3 

sage: number_of_partitions(10) 

42 

sage: number_of_partitions(40) 

37338 

sage: number_of_partitions(100) 

190569292 

sage: number_of_partitions(100000) 

27493510569775696512677516320986352688173429315980054758203125984302147328114964173055050741660736621590157844774296248940493063070200461792764493033510116079342457190155718943509725312466108452006369558934464248716828789832182345009262853831404597021307130674510624419227311238999702284408609370935531629697851569569892196108480158600569421098519 

  

TESTS:: 

  

sage: n = 500 + randint(0,500) 

sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 

True 

sage: n = 1500 + randint(0,1500) 

sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 

True 

sage: n = 1000000 + randint(0,1000000) 

sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 

True 

sage: n = 1000000 + randint(0,1000000) 

sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 

True 

sage: n = 1000000 + randint(0,1000000) 

sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 

True 

sage: n = 1000000 + randint(0,1000000) 

sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 

True 

sage: n = 1000000 + randint(0,1000000) 

sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 

True 

sage: n = 1000000 + randint(0,1000000) 

sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 

True 

sage: n = 100000000 + randint(0,100000000) 

sage: number_of_partitions( n - (n % 385) + 369) % 385 == 0 # long time (4s on sage.math, 2011) 

True 

  

Another consistency test for `n` up to 500:: 

  

sage: len([n for n in [1..500] if number_of_partitions(n) != Partitions(n).cardinality(algorithm='pari')]) 

0 

""" 

n = Integer(n) 

if n < 0: 

raise ValueError("n (=%s) must be a nonnegative integer"%n) 

if n >= Integer(4294967296): 

raise ValueError("input must be a nonnegative integer less than 4294967296.") 

cdef unsigned int nn = n 

  

cdef Integer ans = Integer(0) 

  

sig_on() 

part(ans.value, nn) 

sig_off() 

  

return ans 

  

def run_tests(bint longtest=False, bint forever=False): 

""" 

Test Bober's algorithm. 

  

EXAMPLES:: 

  

sage: from sage.combinat.partitions import run_tests 

sage: run_tests(False, False) 

Computing p(1)... OK. 

... 

Done. 

""" 

sig_on() 

error = test(longtest, forever) 

sig_off() 

print("Done.") 

if error: 

return error 

  

def ZS1_iterator(int n): 

""" 

A fast iterator for the partitions of ``n`` (in the decreasing 

lexicographic order) which returns lists and not objects of type 

:class:`~sage.combinat.partition.Partition`. 

  

This is an implementation of the ZS1 algorithm found in 

[ZS98]_. 

  

REFERENCES: 

  

.. [ZS98] Antoine Zoghbi, Ivan Stojmenovic, 

*Fast Algorithms for Generating Integer Partitions*, 

Intern. J. Computer Math., Vol. 70., pp. 319--332. 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.1287 

  

EXAMPLES:: 

  

sage: from sage.combinat.partitions import ZS1_iterator 

sage: it = ZS1_iterator(4) 

sage: next(it) 

[4] 

sage: type(_) 

<... 'list'> 

""" 

# Easy cases. 

if n < 0: 

return 

if n == 0: 

yield [] 

return 

x = [1]*n 

x[0] = n 

  

cdef int m = 0 

cdef int h = 0 

cdef int r, t 

yield [n] 

while x[0] != 1: 

# Loop invariants at this point: 

# (A) x[:m+1] is a partition of n. 

# (B) x[h+1:] is an array of n-(h+1) ones. 

# (C) x[i] > 1 for each i <= h. 

# (D) 0 <= h <= m. 

if x[h] == 2: 

m += 1 

x[h] = 1 

h -= 1 

else: 

t = m - h + 1 

r = x[h] - 1 

x[h] = r 

while t >= r: 

h += 1 

x[h] = r 

t -= r 

if t == 0: 

m = h 

else: 

m = h + 1 

if t > 1: 

h += 1 

x[h] = t 

#yield [x[i] for i in range(m+1)] 

yield x[:m+1] 

#free(x) 

  

def ZS1_iterator_nk(int n, int k): 

""" 

An iterator for the partitions of ``n`` of length at most ``k`` (in the 

decreasing lexicographic order) which returns lists and not objects of type 

:class:`~sage.combinat.partition.Partition`. 

  

The algorithm is a mild variation on :func:`ZS1_iterator`; 

I would not vow for its speed. 

  

EXAMPLES:: 

  

sage: from sage.combinat.partitions import ZS1_iterator_nk 

sage: it = ZS1_iterator_nk(4, 3) 

sage: next(it) 

[4] 

sage: type(_) 

<... 'list'> 

""" 

# Easy cases. 

if n <= 0: 

if n == 0 and k >= 0: 

yield [] 

return 

if k <= 1: 

if k == 1: 

yield [n] 

return 

x = [1]*k 

x[0] = n 

  

cdef int m = 0 

cdef int h = 0 

cdef int r, t 

yield [n] 

while x[0] != 1: 

# Loop invariants at this point: 

# (A) x[:m+1] is a partition of n. 

# (B) x[h+1:m+1] is an array of m-h ones. 

# (C) x[i] > 1 for each i <= h. 

# (D) 0 <= h <= m < k. 

# Note that x[m+1:] might contain leftover from 

# previous steps; we don't clean up after ourselves. 

if x[h] == 2 and m + 1 < k: 

# We have a 2 in the partition, and the space to 

# spread it into two 1s. 

m += 1 

x[h] = 1 

x[m] = 1 

h -= 1 

yield x[:m+1] 

else: 

t = m - h + 1 # 1 + "the number of 1s to the right of x[h] that belong to the partition" 

r = x[h] - 1 

  

# This loop finds the largest h such that x[:h] can be completed 

# with integers smaller-or-equal to r=x[h]-1 into a partition of n. 

# 

# We decrement h until it becomes possible. 

while t > (k-h-1) * r: 

# Loop invariants: 

# t = n - sum(x[:h+1]) + 1; 

# r = x[h] - 1; x[h] > 1. 

if h == 0: 

# No way to make the current partition 

# lexicographically smaller. 

return 

h -= 1 

t += r + 1 

r = x[h] - 1 

# Decrement x[h] from r + 1 to r, and replace 

# x[h+1:] by the lexicographically highest array 

# it could possibly be. This means replacing 

# x[h+1:] by the array [r, r, r, ..., r, s], 

# where s is the residue of t modulo r (or 

# nothing if that residue is 0). 

x[h] = r 

while t >= r: 

# Loop invariants: t = n - sum(x[:h+1]) + 1; 

# r = x[h] > 1. 

h += 1 

x[h] = r 

t -= r 

if t == 0: 

m = h 

else: 

m = h + 1 

if t > 1: 

h += 1 

x[m] = t 

yield x[:m+1] 

#free(x)