Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

# -*- coding: utf-8 -*- 

r""" 

Linear Extensions of Posets 

 

This module defines two classes: 

 

- :class:`LinearExtensionOfPoset` 

- :class:`LinearExtensionsOfPoset` 

 

Classes and methods 

------------------- 

""" 

#***************************************************************************** 

# Copyright (C) 2012 Anne Schilling <anne at math.ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#**************************************************************************** 

from __future__ import print_function 

from six.moves import range 

from six import add_metaclass 

 

from sage.rings.rational_field import QQ 

from sage.structure.unique_representation import UniqueRepresentation 

from sage.structure.parent import Parent 

from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets 

from sage.graphs.digraph import DiGraph 

import sage.graphs.linearextensions 

from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass 

from sage.graphs.dot2tex_utils import have_dot2tex 

from sage.structure.list_clone import ClonableArray 

 

 

@add_metaclass(InheritComparisonClasscallMetaclass) 

class LinearExtensionOfPoset(ClonableArray): 

r""" 

A linear extension of a finite poset `P` of size `n` is a total 

ordering `\pi := \pi_0 \pi_1 \ldots \pi_{n-1}` of its elements 

such that `i<j` whenever `\pi_i < \pi_j` in the poset `P`. 

 

When the elements of `P` are indexed by `\{1,2,\ldots,n\}`, `\pi` 

denotes a permutation of the elements of `P` in one-line notation. 

 

INPUT: 

 

- ``linear_extension`` -- a list of the elements of `P` 

- ``poset`` -- the underlying poset `P` 

 

.. SEEALSO:: :class:`~sage.combinat.posets.posets.Poset`, :class:`LinearExtensionsOfPoset` 

 

EXAMPLES:: 

 

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]]), linear_extension=True, facade=False) 

sage: p = P.linear_extension([1,4,2,3]); p 

[1, 4, 2, 3] 

sage: p.parent() 

The set of all linear extensions of Finite poset containing 4 elements with distinguished linear extension 

sage: p[0], p[1], p[2], p[3] 

(1, 4, 2, 3) 

 

Following Schützenberger and later Haiman and 

Malvenuto-Reutenauer, Stanley [Stan2009]_ defined a promotion 

and evacuation operator on any finite poset `P` using operators 

`\tau_i` on the linear extensions of `P`:: 

 

sage: p.promotion() 

[1, 2, 3, 4] 

sage: Q = p.promotion().to_poset() 

sage: Q.cover_relations() 

[[1, 3], [1, 4], [2, 3]] 

sage: Q == P 

True 

 

sage: p.promotion(3) 

[1, 4, 2, 3] 

sage: Q = p.promotion(3).to_poset() 

sage: Q == P 

False 

sage: Q.cover_relations() 

[[1, 2], [1, 4], [3, 4]] 

""" 

@staticmethod 

def __classcall_private__(cls, linear_extension, poset): 

r""" 

Implements the shortcut ``LinearExtensionOfPoset(linear_extension, poset)`` to ``LinearExtensionsOfPoset(poset)(linear_extension)`` 

 

INPUT: 

 

- ``linear_extension`` -- a list of elements of ``poset`` 

- ``poset`` -- a finite poset 

 

.. todo:: check whether this method is still useful 

 

TESTS:: 

 

sage: from sage.combinat.posets.linear_extensions import LinearExtensionOfPoset 

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]])) 

sage: p = LinearExtensionOfPoset([1,4,2,3], P) 

sage: p.parent() 

The set of all linear extensions of Finite poset containing 4 elements 

sage: type(p) 

<class 'sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset_with_category.element_class'> 

sage: p.poset() 

Finite poset containing 4 elements 

sage: TestSuite(p).run() 

 

sage: LinearExtensionOfPoset([4,3,2,1], P) 

Traceback (most recent call last): 

... 

ValueError: [4, 3, 2, 1] is not a linear extension of Finite poset containing 4 elements 

""" 

if isinstance(linear_extension, cls): 

return linear_extension 

return LinearExtensionsOfPoset(poset)(linear_extension) 

 

def check(self): 

r""" 

Checks whether ``self`` is indeed a linear extension of the underlying poset. 

 

TESTS:: 

 

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]])) 

sage: P.linear_extension([1,4,2,3]) 

[1, 4, 2, 3] 

sage: P.linear_extension([4,3,2,1]) 

Traceback (most recent call last): 

... 

ValueError: [4, 3, 2, 1] is not a linear extension of Finite poset containing 4 elements 

""" 

P = self.parent().poset() 

if not P.is_linear_extension(self): 

raise ValueError("%s is not a linear extension of %s"%(self, P)) 

 

def poset(self): 

r""" 

Returns the underlying original poset. 

 

EXAMPLES:: 

 

sage: P = Poset(([1,2,3,4], [[1,2],[2,3],[1,4]])) 

sage: p = P.linear_extension([1,2,4,3]) 

sage: p.poset() 

Finite poset containing 4 elements 

""" 

return self.parent().poset() 

 

def _latex_(self): 

r""" 

Returns the latex string for ``self``. 

 

EXAMPLES:: 

 

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]])) 

sage: p = P.linear_extension([1,2,3,4]) 

sage: p._latex_() 

'\\mathtt{(1, 2, 3, 4)}' 

""" 

return "\\mathtt{"+str(tuple(self))+"}" 

 

def to_poset(self): 

r""" 

Return the poset associated to the linear extension ``self``. 

 

This method returns the poset obtained from the original poset 

`P` by relabelling the `i`-th element of ``self`` to the 

`i`-th element of the original poset, while keeping the linear 

extension of the original poset. 

 

For a poset with default linear extension `1,\dots,n`, 

``self`` can be interpreted as a permutation, and the 

relabelling is done according to the inverse of this 

permutation. 

 

EXAMPLES:: 

 

sage: P = Poset(([1,2,3,4], [[1,2],[1,3],[3,4]]), linear_extension=True, facade=False) 

sage: p = P.linear_extension([1,3,4,2]) 

sage: Q = p.to_poset(); Q 

Finite poset containing 4 elements with distinguished linear extension 

sage: P == Q 

False 

 

The default linear extension remains the same:: 

 

sage: list(P) 

[1, 2, 3, 4] 

sage: list(Q) 

[1, 2, 3, 4] 

 

But the relabelling can be seen on cover relations:: 

 

sage: P.cover_relations() 

[[1, 2], [1, 3], [3, 4]] 

sage: Q.cover_relations() 

[[1, 2], [1, 4], [2, 3]] 

 

sage: p = P.linear_extension([1,2,3,4]) 

sage: Q = p.to_poset() 

sage: P == Q 

True 

""" 

P = self.parent().poset() 

old = [P.unwrap(x) for x in self] 

new = [P.unwrap(x) for x in P] 

relabelling = dict(zip(old,new)) 

return P.relabel(relabelling).with_linear_extension(new) 

 

def is_greedy(self): 

""" 

Return ``True`` if the linear extension is greedy. 

 

A linear extension `[e_1, e_2, \ldots, e_n]` is *greedy* if for 

every `i` either `e_{i+1}` covers `e_i` or all upper covers 

of `e_i` have at least one lower cover that is not in 

`[e_1, e_2, \ldots, e_i]`. 

 

Informally said a linear extension is greedy if it "always 

goes up when possible" and so has no unnecessary jumps. 

 

EXAMPLES:: 

 

sage: P = posets.PentagonPoset() 

sage: for l in P.linear_extensions(): 

....: if not l.is_greedy(): 

....: print(l) 

[0, 2, 1, 3, 4] 

 

TESTS:: 

 

sage: E = Poset() 

sage: E.linear_extensions()[0].is_greedy() 

True 

""" 

P = self.poset() 

for i in range(len(self)-1): 

if not P.covers(self[i], self[i+1]): 

for u in P.upper_covers(self[i]): 

if all(l in self[:i+1] for l in P.lower_covers(u)): 

return False 

return True 

 

def tau(self, i): 

r""" 

Returns the operator `\tau_i` on linear extensions ``self`` of a poset. 

 

INPUT: 

 

- `i` -- an integer between `1` and `n-1`, where `n` is the cardinality of the poset. 

 

The operator `\tau_i` on a linear extension `\pi` of a poset 

`P` interchanges positions `i` and `i+1` if the result is 

again a linear extension of `P`, and otherwise acts 

trivially. For more details, see [Stan2009]_. 

 

EXAMPLES:: 

 

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]]), linear_extension=True) 

sage: L = P.linear_extensions() 

sage: l = L.an_element(); l 

[1, 2, 3, 4] 

sage: l.tau(1) 

[2, 1, 3, 4] 

sage: for p in L: 

....: for i in range(1,4): 

....: print("{} {} {}".format(i, p, p.tau(i))) 

1 [1, 2, 3, 4] [2, 1, 3, 4] 

2 [1, 2, 3, 4] [1, 2, 3, 4] 

3 [1, 2, 3, 4] [1, 2, 4, 3] 

1 [1, 2, 4, 3] [2, 1, 4, 3] 

2 [1, 2, 4, 3] [1, 4, 2, 3] 

3 [1, 2, 4, 3] [1, 2, 3, 4] 

1 [1, 4, 2, 3] [1, 4, 2, 3] 

2 [1, 4, 2, 3] [1, 2, 4, 3] 

3 [1, 4, 2, 3] [1, 4, 2, 3] 

1 [2, 1, 3, 4] [1, 2, 3, 4] 

2 [2, 1, 3, 4] [2, 1, 3, 4] 

3 [2, 1, 3, 4] [2, 1, 4, 3] 

1 [2, 1, 4, 3] [1, 2, 4, 3] 

2 [2, 1, 4, 3] [2, 1, 4, 3] 

3 [2, 1, 4, 3] [2, 1, 3, 4] 

 

TESTS:: 

 

sage: type(l.tau(1)) 

<class 'sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset_with_category.element_class'> 

sage: l.tau(2) == l 

True 

""" 

P = self.poset() 

a = self[i-1] 

b = self[i ] 

if P.lt(a,b) or P.lt(b,a): 

return self 

with self.clone() as q: 

q[i-1] = b 

q[i ] = a 

return q 

 

def promotion(self, i=1): 

r""" 

Computes the (generalized) promotion on the linear extension of a poset. 

 

INPUT: 

 

- `i` -- an integer between `1` and `n-1`, where `n` is the cardinality of the poset (default: `1`) 

 

The `i`-th generalized promotion operator `\partial_i` on a linear extension 

`\pi` is defined as `\pi \tau_i \tau_{i+1} \cdots \tau_{n-1}`, where `n` is the 

size of the linear extension (or size of the underlying poset). 

 

For more details see [Stan2009]_. 

 

.. SEEALSO:: :meth:`tau`, :meth:`evacuation` 

 

EXAMPLES:: 

 

sage: P = Poset(([1,2,3,4,5,6,7], [[1,2],[1,4],[2,3],[2,5],[3,6],[4,7],[5,6]])) 

sage: p = P.linear_extension([1,2,3,4,5,6,7]) 

sage: q = p.promotion(4); q 

[1, 2, 3, 5, 6, 4, 7] 

sage: p.to_poset() == q.to_poset() 

False 

sage: p.to_poset().is_isomorphic(q.to_poset()) 

True 

""" 

for j in range(i,len(self)): 

self = self.tau(j) 

return self 

 

def evacuation(self): 

r""" 

Computes evacuation on the linear extension of a poset. 

 

Evacuation on a linear extension `\pi` of length `n` is defined as 

`\pi (\tau_1 \cdots \tau_{n-1}) (\tau_1 \cdots \tau_{n-2}) \cdots (\tau_1)`. 

For more details see [Stan2009]_. 

 

.. SEEALSO:: :meth:`tau`, :meth:`promotion` 

 

EXAMPLES:: 

 

sage: P = Poset(([1,2,3,4,5,6,7], [[1,2],[1,4],[2,3],[2,5],[3,6],[4,7],[5,6]])) 

sage: p = P.linear_extension([1,2,3,4,5,6,7]) 

sage: p.evacuation() 

[1, 4, 2, 3, 7, 5, 6] 

sage: p.evacuation().evacuation() == p 

True 

""" 

for i in reversed(range(1,len(self)+1)): 

for j in range(1,i): 

self = self.tau(j) 

return self 

 

def jump_count(self): 

""" 

Return the number of jumps in the linear extension. 

 

A *jump* in a linear extension `[e_1, e_2, \ldots, e_n]` 

is a pair `(e_i, e_{i+1})` such that `e_{i+1}` does not 

cover `e_i`. 

 

.. SEEALSO:: 

 

- :meth:`sage.combinat.posets.posets.FinitePoset.jump_number()` 

 

EXAMPLES:: 

 

sage: B3 = posets.BooleanLattice(3) 

sage: l1 = B3.linear_extension((0, 1, 2, 3, 4, 5, 6, 7)) 

sage: l1.jump_count() 

3 

sage: l2 = B3.linear_extension((0, 1, 2, 4, 3, 5, 6, 7)) 

sage: l2.jump_count() 

5 

 

TESTS:: 

 

sage: E = Poset() 

sage: E.linear_extensions()[0].jump_count() 

0 

sage: C4 = posets.ChainPoset(4) 

sage: C4.linear_extensions()[0].jump_count() 

0 

sage: A4 = posets.AntichainPoset(4) 

sage: A4.linear_extensions()[0].jump_count() 

3 

""" 

P = self.poset() 

n = 0 

for i in range(len(self)-1): 

if not P.covers(self[i], self[i+1]): 

n += 1 

return n 

 

class LinearExtensionsOfPoset(UniqueRepresentation, Parent): 

""" 

The set of all linear extensions of a finite poset 

 

INPUT: 

 

- ``poset`` -- a poset `P` of size `n` 

- ``facade`` -- a boolean (default: ``False``) 

 

.. SEEALSO:: 

 

- :meth:`sage.combinat.posets.posets.FinitePoset.linear_extensions` 

- :class:`sage.graphs.linearextensions.LinearExtensions` 

 

EXAMPLES:: 

 

sage: elms = [1,2,3,4] 

sage: rels = [[1,3],[1,4],[2,3]] 

sage: P = Poset((elms, rels), linear_extension=True) 

sage: L = P.linear_extensions(); L 

The set of all linear extensions of Finite poset containing 4 elements with distinguished linear extension 

sage: L.cardinality() 

5 

sage: L.list() 

[[1, 2, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [2, 1, 3, 4], [2, 1, 4, 3]] 

sage: L.an_element() 

[1, 2, 3, 4] 

sage: L.poset() 

Finite poset containing 4 elements with distinguished linear extension 

""" 

 

@staticmethod 

def __classcall_private__(cls, poset, facade=False): 

r""" 

Straighten arguments before unique representation. 

 

TESTS:: 

 

sage: from sage.combinat.posets.linear_extensions import LinearExtensionsOfPoset 

sage: P = Poset(([1,2],[[1,2]])) 

sage: L = LinearExtensionsOfPoset(P) 

sage: type(L) 

<class 'sage.combinat.posets.linear_extensions.LinearExtensionsOfPoset_with_category'> 

sage: L is LinearExtensionsOfPoset(P,facade=False) 

True 

""" 

return super(LinearExtensionsOfPoset, cls).__classcall__(cls, poset, facade=facade) 

 

def __init__(self, poset, facade): 

""" 

TESTS:: 

 

sage: from sage.combinat.posets.linear_extensions import LinearExtensionsOfPoset 

sage: P = Poset(([1,2,3],[[1,2],[1,3]])) 

sage: L = P.linear_extensions() 

sage: L is LinearExtensionsOfPoset(P) 

True 

sage: L._poset is P 

True 

sage: L._linear_extensions_of_hasse_diagram 

Linear extensions of Hasse diagram of a poset containing 3 elements 

sage: TestSuite(L).run() 

 

sage: P = Poset((divisors(15), attrcall("divides"))) 

sage: L = P.linear_extensions() 

sage: TestSuite(L).run() 

 

sage: P = Poset((divisors(15), attrcall("divides")), facade=True) 

sage: L = P.linear_extensions() 

sage: TestSuite(L).run() 

 

sage: L = P.linear_extensions(facade = True) 

sage: TestSuite(L).run(skip="_test_an_element") 

""" 

self._poset = poset 

self._linear_extensions_of_hasse_diagram = sage.graphs.linearextensions.LinearExtensions(poset._hasse_diagram) 

self._is_facade = facade 

if facade: 

facade = (list,) 

Parent.__init__(self, category = FiniteEnumeratedSets(), facade=facade) 

 

def _repr_(self): 

""" 

TESTS:: 

 

sage: P = Poset(([1,2,3],[[1,2],[1,3]])) 

sage: P.linear_extensions() 

The set of all linear extensions of Finite poset containing 3 elements 

""" 

return "The set of all linear extensions of %s"%(self._poset) 

 

def poset(self): 

r""" 

Returns the underlying original poset. 

 

EXAMPLES:: 

 

sage: P = Poset(([1,2,3,4], [[1,2],[2,3],[1,4]])) 

sage: L = P.linear_extensions() 

sage: L.poset() 

Finite poset containing 4 elements 

""" 

return self._poset 

 

def cardinality(self): 

""" 

Return the number of linear extensions. 

 

EXAMPLES:: 

 

sage: N = Poset({0: [2, 3], 1: [3]}) 

sage: N.linear_extensions().cardinality() 

5 

 

TESTS:: 

 

sage: Poset().linear_extensions().cardinality() 

1 

sage: posets.ChainPoset(1).linear_extensions().cardinality() 

1 

sage: posets.BooleanLattice(4).linear_extensions().cardinality() 

1680384 

""" 

from sage.rings.integer import Integer 

 

n = len(self._poset) 

if not n: 

return Integer(1) 

 

up = self._poset._hasse_diagram.to_dictionary() 

# Convert to the Hasse diagram so our poset can be realized on 

# the set {0,...,n-1} with a nice dictionary of edges 

 

for i in range(n): 

up[n - 1 - i] = sorted(set(up[n - 1 - i] + 

[item for x in up[n - 1 - i] 

for item in up[x]])) 

# Compute the principal order filter for each element. 

 

Jup = {1: []} 

# Jup will be a dictionary giving up edges in J(P) 

 

# We will perform a loop where after k loops, we will have a 

# list of up edges for the lattice of order ideals for P 

# restricted to entries 0,...,k. 

loc = [1] * n 

 

# This list will be indexed by entries in P. After k loops, 

# the entry loc[i] will correspond to the element of J(P) that 

# is the principal order ideal of i, restricted to the 

# elements 0,...,k . 

 

m = 1 

# m keeps track of how many elements we currently have in J(P). 

# We start with just the empty order ideal, and no relations. 

for x in range(n): 

# Use the existing Jup table to compute all covering 

# relations in J(P) for things that are above loc(x). 

K = [[loc[x]]] 

j = 0 

while K[j]: 

K.append([b for a in K[j] for b in Jup[a]]) 

j += 1 

K = sorted(set(item for sublist in K for item in sublist)) 

for j in range(len(K)): 

i = m + j + 1 

Jup[i] = [m + K.index(a) + 1 for a in Jup[K[j]]] 

# These are copies of the covering relations with 

# elements from K, but now with the underlying 

# elements containing x. 

Jup[K[j]] = Jup[K[j]] + [i] 

# There are the new covering relations we get between 

# ideals that don't contain x and those that do. 

for y in up[x]: 

loc[y] = K.index(loc[y]) + m + 1 

# Updates loc[y] if y is above x. 

m += len(K) 

# Now we have a dictionary of covering relations for J(P). The 

# following shortcut works to count maximal chains, since we 

# made J(P) naturally labelled, and J(P) has a unique maximal 

# element and minimum element. 

 

Jup[m] = Integer(1) 

while m > 1: 

m -= 1 

ct = Integer(0) 

for j in Jup[m]: 

ct += Jup[j] 

Jup[m] = ct 

return ct 

 

def __iter__(self): 

r""" 

Iterates through the linear extensions of the underlying poset. 

 

EXAMPLES:: 

 

sage: elms = [1,2,3,4] 

sage: rels = [[1,3],[1,4],[2,3]] 

sage: P = Poset((elms, rels), linear_extension=True) 

sage: L = P.linear_extensions() 

sage: list(L) 

[[1, 2, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [2, 1, 3, 4], [2, 1, 4, 3]] 

""" 

vertex_to_element = self._poset._vertex_to_element 

for lin_ext in self._linear_extensions_of_hasse_diagram: 

yield self._element_constructor_([vertex_to_element(_) for _ in lin_ext]) 

 

def __contains__(self, obj): 

""" 

Membership testing 

 

EXAMPLES:: 

 

sage: P = Poset((divisors(12), attrcall("divides")), facade=True, linear_extension=True) 

sage: P.list() 

[1, 2, 3, 4, 6, 12] 

sage: L = P.linear_extensions() 

sage: L([1, 2, 4, 3, 6, 12]) in L 

True 

sage: [1, 2, 4, 3, 6, 12] in L 

False 

 

sage: L = P.linear_extensions(facade=True) 

sage: [1, 2, 4, 3, 6, 12] in L 

True 

sage: [1, 3, 2, 6, 4, 12] in L 

True 

sage: [1, 3, 6, 2, 4, 12] in L 

False 

 

sage: [p for p in Permutations(list(P)) if list(p) in L] 

[[1, 2, 3, 4, 6, 12], [1, 2, 3, 6, 4, 12], [1, 2, 4, 3, 6, 12], [1, 3, 2, 4, 6, 12], [1, 3, 2, 6, 4, 12]] 

 

""" 

if not self._is_facade: 

return super(LinearExtensionsOfPoset, self).__contains__(obj) 

return (isinstance(obj, (list, tuple)) and 

self.poset().is_linear_extension(obj)) 

 

def markov_chain_digraph(self, action = 'promotion', labeling = 'identity'): 

r""" 

Returns the digraph of the action of generalized promotion or tau on ``self`` 

 

INPUT: 

 

- ``action`` -- 'promotion' or 'tau' (default: 'promotion') 

- ``labeling`` -- 'identity' or 'source' (default: 'identity') 

 

.. todo:: 

 

- generalize this feature by accepting a family of operators as input 

- move up in some appropriate category 

 

This method creates a graph with vertices being the linear extensions of a given finite 

poset and an edge from `\pi` to `\pi'` if `\pi' = \pi \partial_i` where `\partial_i` is 

the promotion operator (see :meth:`promotion`) if ``action`` is set to ``promotion`` 

and `\tau_i` (see :meth:`tau`) if ``action`` is set to ``tau``. The label of the edge 

is `i` (resp. `\pi_i`) if ``labeling`` is set to ``identity`` (resp. ``source``). 

 

EXAMPLES:: 

 

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]]), linear_extension = True) 

sage: L = P.linear_extensions() 

sage: G = L.markov_chain_digraph(); G 

Looped multi-digraph on 5 vertices 

sage: sorted(G.vertices(), key = repr) 

[[1, 2, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [2, 1, 3, 4], [2, 1, 4, 3]] 

sage: sorted(G.edges(), key = repr) 

[([1, 2, 3, 4], [1, 2, 3, 4], 4), ([1, 2, 3, 4], [1, 2, 4, 3], 2), ([1, 2, 3, 4], [1, 2, 4, 3], 3), 

([1, 2, 3, 4], [2, 1, 4, 3], 1), ([1, 2, 4, 3], [1, 2, 3, 4], 3), ([1, 2, 4, 3], [1, 2, 4, 3], 4), 

([1, 2, 4, 3], [1, 4, 2, 3], 2), ([1, 2, 4, 3], [2, 1, 3, 4], 1), ([1, 4, 2, 3], [1, 2, 3, 4], 1), 

([1, 4, 2, 3], [1, 2, 3, 4], 2), ([1, 4, 2, 3], [1, 4, 2, 3], 3), ([1, 4, 2, 3], [1, 4, 2, 3], 4), 

([2, 1, 3, 4], [1, 2, 4, 3], 1), ([2, 1, 3, 4], [2, 1, 3, 4], 4), ([2, 1, 3, 4], [2, 1, 4, 3], 2), 

([2, 1, 3, 4], [2, 1, 4, 3], 3), ([2, 1, 4, 3], [1, 4, 2, 3], 1), ([2, 1, 4, 3], [2, 1, 3, 4], 2), 

([2, 1, 4, 3], [2, 1, 3, 4], 3), ([2, 1, 4, 3], [2, 1, 4, 3], 4)] 

 

sage: G = L.markov_chain_digraph(labeling = 'source') 

sage: sorted(G.vertices(), key = repr) 

[[1, 2, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [2, 1, 3, 4], [2, 1, 4, 3]] 

sage: sorted(G.edges(), key = repr) 

[([1, 2, 3, 4], [1, 2, 3, 4], 4), ([1, 2, 3, 4], [1, 2, 4, 3], 2), ([1, 2, 3, 4], [1, 2, 4, 3], 3), 

([1, 2, 3, 4], [2, 1, 4, 3], 1), ([1, 2, 4, 3], [1, 2, 3, 4], 4), ([1, 2, 4, 3], [1, 2, 4, 3], 3), 

([1, 2, 4, 3], [1, 4, 2, 3], 2), ([1, 2, 4, 3], [2, 1, 3, 4], 1), ([1, 4, 2, 3], [1, 2, 3, 4], 1), 

([1, 4, 2, 3], [1, 2, 3, 4], 4), ([1, 4, 2, 3], [1, 4, 2, 3], 2), ([1, 4, 2, 3], [1, 4, 2, 3], 3), 

([2, 1, 3, 4], [1, 2, 4, 3], 2), ([2, 1, 3, 4], [2, 1, 3, 4], 4), ([2, 1, 3, 4], [2, 1, 4, 3], 1), 

([2, 1, 3, 4], [2, 1, 4, 3], 3), ([2, 1, 4, 3], [1, 4, 2, 3], 2), ([2, 1, 4, 3], [2, 1, 3, 4], 1), 

([2, 1, 4, 3], [2, 1, 3, 4], 4), ([2, 1, 4, 3], [2, 1, 4, 3], 3)] 

 

The edges of the graph are by default colored using blue for 

edge 1, red for edge 2, green for edge 3, and yellow for edge 4:: 

 

sage: view(G) # optional - dot2tex graphviz, not tested (opens external window) 

 

Alternatively, one may get the graph of the action of the ``tau`` operator:: 

 

sage: G = L.markov_chain_digraph(action='tau'); G 

Looped multi-digraph on 5 vertices 

sage: sorted(G.vertices(), key = repr) 

[[1, 2, 3, 4], [1, 2, 4, 3], [1, 4, 2, 3], [2, 1, 3, 4], [2, 1, 4, 3]] 

sage: sorted(G.edges(), key = repr) 

[([1, 2, 3, 4], [1, 2, 3, 4], 2), ([1, 2, 3, 4], [1, 2, 4, 3], 3), ([1, 2, 3, 4], [2, 1, 3, 4], 1), 

([1, 2, 4, 3], [1, 2, 3, 4], 3), ([1, 2, 4, 3], [1, 4, 2, 3], 2), ([1, 2, 4, 3], [2, 1, 4, 3], 1), 

([1, 4, 2, 3], [1, 2, 4, 3], 2), ([1, 4, 2, 3], [1, 4, 2, 3], 1), ([1, 4, 2, 3], [1, 4, 2, 3], 3), 

([2, 1, 3, 4], [1, 2, 3, 4], 1), ([2, 1, 3, 4], [2, 1, 3, 4], 2), ([2, 1, 3, 4], [2, 1, 4, 3], 3), 

([2, 1, 4, 3], [1, 2, 4, 3], 1), ([2, 1, 4, 3], [2, 1, 3, 4], 3), ([2, 1, 4, 3], [2, 1, 4, 3], 2)] 

sage: view(G) # optional - dot2tex graphviz, not tested (opens external window) 

 

.. SEEALSO:: :meth:`markov_chain_transition_matrix`, :meth:`promotion`, :meth:`tau` 

 

TESTS:: 

 

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]]), linear_extension = True, facade = True) 

sage: L = P.linear_extensions() 

sage: G = L.markov_chain_digraph(labeling = 'source'); G 

Looped multi-digraph on 5 vertices 

""" 

d = dict([x,dict([y,[]] for y in self)] for x in self) 

if action == 'promotion': 

R = list(range(self.poset().cardinality())) 

else: 

R = list(range(self.poset().cardinality() - 1)) 

if labeling == 'source': 

for x in self: 

for i in R: 

child = getattr(x, action)(i+1) 

d[x][child]+=[self.poset().unwrap(x[i])] 

else: 

for x in self: 

for i in R: 

child = getattr(x, action)(i+1) 

d[x][child]+=[i+1] 

G = DiGraph(d, format="dict_of_dicts") 

if have_dot2tex(): 

G.set_latex_options(format="dot2tex", edge_labels = True, color_by_label = {1:"blue", 2:"red", 3:"green", 4:"yellow"}) 

#G.set_latex_options(format="dot2tex", edge_labels = True, color_by_label = {1:"green", 2:"blue", 3:"brown", 4:"red"}) 

return G 

 

def markov_chain_transition_matrix(self, action = 'promotion', labeling = 'identity'): 

r""" 

Returns the transition matrix of the Markov chain for the action of generalized promotion or tau on ``self`` 

 

INPUT: 

 

- ``action`` -- 'promotion' or 'tau' (default: 'promotion') 

- ``labeling`` -- 'identity' or 'source' (default: 'identity') 

 

This method yields the transition matrix of the Markov chain defined by the action of the generalized 

promotion operator `\partial_i` (resp. `\tau_i`) on the set of linear extensions of a finite poset. 

Here the transition from the linear extension `\pi` to `\pi'`, where `\pi' = \pi \partial_i` 

(resp. `\pi'= \pi \tau_i`) is counted with weight `x_i` (resp. `x_{\pi_i}` if ``labeling`` is set to ``source``). 

 

EXAMPLES:: 

 

sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]]), linear_extension = True) 

sage: L = P.linear_extensions() 

sage: L.markov_chain_transition_matrix() 

[-x0 - x1 - x2 x2 x0 + x1 0 0] 

[ x1 + x2 -x0 - x1 - x2 0 x0 0] 

[ 0 x1 -x0 - x1 0 x0] 

[ 0 x0 0 -x0 - x1 - x2 x1 + x2] 

[ x0 0 0 x1 + x2 -x0 - x1 - x2] 

 

sage: L.markov_chain_transition_matrix(labeling = 'source') 

[-x0 - x1 - x2 x3 x0 + x3 0 0] 

[ x1 + x2 -x0 - x1 - x3 0 x1 0] 

[ 0 x1 -x0 - x3 0 x1] 

[ 0 x0 0 -x0 - x1 - x2 x0 + x3] 

[ x0 0 0 x0 + x2 -x0 - x1 - x3] 

 

sage: L.markov_chain_transition_matrix(action = 'tau') 

[ -x0 - x2 x2 0 x0 0] 

[ x2 -x0 - x1 - x2 x1 0 x0] 

[ 0 x1 -x1 0 0] 

[ x0 0 0 -x0 - x2 x2] 

[ 0 x0 0 x2 -x0 - x2] 

 

sage: L.markov_chain_transition_matrix(action = 'tau', labeling = 'source') 

[ -x0 - x2 x3 0 x1 0] 

[ x2 -x0 - x1 - x3 x3 0 x1] 

[ 0 x1 -x3 0 0] 

[ x0 0 0 -x1 - x2 x3] 

[ 0 x0 0 x2 -x1 - x3] 

 

.. SEEALSO:: :meth:`markov_chain_digraph`, :meth:`promotion`, :meth:`tau` 

 

""" 

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing 

from sage.matrix.constructor import matrix 

L = self.list() 

n = self.poset().cardinality() 

R = PolynomialRing(QQ, 'x', n) 

x = [R.gen(i) for i in range(n)] 

l = self.cardinality() 

M = dict([(i,j),0] for i in range(l) for j in range(l)) 

if labeling == 'source': 

for i in range(l): 

perm = [ self.poset().unwrap(k) for k in L[i] ] 

for j in range(n-1): 

p = getattr(L[i], action)(j+1) 

M[(L.index(p),i)] += x[perm[j]-1] 

else: 

for i in range(l): 

for j in range(n-1): 

p = getattr(L[i], action)(j+1) 

M[(L.index(p),i)] += x[j] 

for i in range(l): 

M[(i,i)] += -sum(M[(j,i)] for j in range(l)) 

return matrix(l,l,lambda x,y : M[(x,y)]) 

 

def _element_constructor_(self, lst, check=True): 

r""" 

Constructor for elements of this class. 

 

TESTS:: 

 

sage: P = Poset(([1,2,3,4], [[1,2],[1,4],[2,3]])) 

sage: L = P.linear_extensions() 

sage: x = L._element_constructor_([1,2,4,3]); x 

[1, 2, 4, 3] 

sage: x.parent() is L 

True 

 

sage: L._element_constructor_([4,3,2,1]) 

Traceback (most recent call last): 

... 

ValueError: [4, 3, 2, 1] is not a linear extension of Finite poset containing 4 elements 

sage: L._element_constructor_([4,3,2,1],check=False) 

[4, 3, 2, 1] 

""" 

if isinstance(lst, LinearExtensionOfPoset): 

lst = list(lst) 

if not isinstance(lst, (list, tuple)): 

raise TypeError("input should be a list or tuple") 

lst = [self._poset(_) for _ in lst] 

if self._is_facade: 

return lst 

else: 

return self.element_class(self, lst, check) 

 

Element = LinearExtensionOfPoset