Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

r""" 

Bijection classes for type `A_{2n-1}^{(2)}`. 

 

Part of the (internal) classes which runs the bijection between rigged 

configurations and KR tableaux of type `A_{2n-1}^{(2)}`. 

 

AUTHORS: 

 

- Travis Scrimshaw (2012-12-21): Initial version 

 

TESTS:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 5, 2], [[2,1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_A2_odd import KRTToRCBijectionTypeA2Odd 

sage: bijection = KRTToRCBijectionTypeA2Odd(KRT(pathlist=[[-1,2]])) 

sage: TestSuite(bijection).run() 

sage: RC = RiggedConfigurations(['A', 5, 2], [[2, 1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_A2_odd import RCToKRTBijectionTypeA2Odd 

sage: bijection = RCToKRTBijectionTypeA2Odd(RC(partition_list=[[],[],[]])) 

sage: TestSuite(bijection).run() 

""" 

 

#***************************************************************************** 

# Copyright (C) 2012 Travis Scrimshaw <tscrim@ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.combinat.rigged_configurations.bij_type_A import KRTToRCBijectionTypeA 

from sage.combinat.rigged_configurations.bij_type_A import RCToKRTBijectionTypeA 

 

class KRTToRCBijectionTypeA2Odd(KRTToRCBijectionTypeA): 

r""" 

Specific implementation of the bijection from KR tableaux to rigged 

configurations for type `A_{2n-1}^{(2)}`. 

 

This inherits from type `A_n^{(1)}` because we use the same methods in 

some places. 

""" 

 

def next_state(self, val): 

r""" 

Build the next state for type `A_{2n-1}^{(2)}`. 

 

TESTS:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 5, 2], [[2,1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_A2_odd import KRTToRCBijectionTypeA2Odd 

sage: bijection = KRTToRCBijectionTypeA2Odd(KRT(pathlist=[[-2,3]])) 

sage: bijection.cur_path.insert(0, []) 

sage: bijection.cur_dims.insert(0, [0, 1]) 

sage: bijection.cur_path[0].insert(0, [3]) 

sage: bijection.next_state(3) 

""" 

# Note that we must subtract 1 from n to match the indices. 

n = self.n 

tableau_height = len(self.cur_path[0]) - 1 

 

# If it is a regular value, we follow the A_n rules 

if val > 0: 

KRTToRCBijectionTypeA.next_state(self, val) 

return 

 

pos_val = -val 

 

# Always add a cell to the first singular value in the first 

# tableau we are updating. 

if len(self.ret_rig_con[pos_val - 1]) > 0: 

max_width = self.ret_rig_con[pos_val - 1][0] 

else: 

max_width = 1 

 

# Add cells similar to type A_n but we move to the right until we 

# reach the value of n 

for a in range(pos_val - 1, n): 

max_width = self.ret_rig_con[a].insert_cell(max_width) 

 

# Now go back following the regular A_n rules 

for a in reversed(range(tableau_height, n - 1)): 

max_width = self.ret_rig_con[a].insert_cell(max_width) 

self._update_vacancy_nums(a + 1) 

self._update_partition_values(a + 1) 

 

# Update the final rigged partitions 

if tableau_height < n: 

self._update_vacancy_nums(tableau_height) 

self._update_partition_values(tableau_height) 

 

if pos_val <= tableau_height: 

for a in range(pos_val-1, tableau_height): 

self._update_vacancy_nums(a) 

self._update_partition_values(a) 

if pos_val > 1: 

self._update_vacancy_nums(pos_val - 2) 

self._update_partition_values(pos_val - 2) 

elif tableau_height > 0: 

self._update_vacancy_nums(tableau_height - 1) 

self._update_partition_values(tableau_height - 1) 

 

class RCToKRTBijectionTypeA2Odd(RCToKRTBijectionTypeA): 

r""" 

Specific implementation of the bijection from rigged configurations to 

tensor products of KR tableaux for type `A_{2n-1}^{(2)}`. 

""" 

 

def next_state(self, height): 

r""" 

Build the next state for type `A_{2n-1}^{(2)}`. 

 

TESTS:: 

 

sage: RC = RiggedConfigurations(['A', 5, 2], [[2, 1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_A2_odd import RCToKRTBijectionTypeA2Odd 

sage: bijection = RCToKRTBijectionTypeA2Odd(RC(partition_list=[[1],[2,1],[2]])) 

sage: bijection.next_state(1) 

-2 

""" 

height -= 1 # indexing 

n = self.n 

ell = [None] * (2*n) 

b = None 

 

# Calculate the rank and ell values 

 

last_size = 0 

for a in range(height, n): 

ell[a] = self._find_singular_string(self.cur_partitions[a], last_size) 

 

if ell[a] is None: 

b = a + 1 

break 

else: 

last_size = self.cur_partitions[a][ell[a]] 

 

if b is None: 

# Now go back 

for a in reversed(range(n - 1)): 

# Modified form of _find_singular_string() 

end = ell[a] 

if a < height: 

end = len(self.cur_partitions[a]) 

for i in reversed(range(end)): 

if self.cur_partitions[a][i] >= last_size and \ 

self.cur_partitions[a].vacancy_numbers[i] == self.cur_partitions[a].rigging[i]: 

ell[n + a] = i 

break 

 

if ell[n + a] is None: 

b = -(a + 2) 

break 

else: 

last_size = self.cur_partitions[a][ell[n + a]] 

 

if b is None: 

b = -1 

 

# Determine the new rigged configuration by removing a box from the selected 

# string and then making the new string singular 

ret_row = self.cur_partitions[0].remove_cell(ell[0]) 

ret_row_bar = self.cur_partitions[0].remove_cell(ell[n]) 

for a in range(1, n - 1): 

ret_row_next = self.cur_partitions[a].remove_cell(ell[a]) 

ret_row_bar_next = self.cur_partitions[a].remove_cell(ell[n + a]) 

 

self._update_vacancy_numbers(a - 1) 

if ret_row is not None: 

self.cur_partitions[a-1].rigging[ret_row] = self.cur_partitions[a-1].vacancy_numbers[ret_row] 

if ret_row_bar is not None: 

self.cur_partitions[a-1].rigging[ret_row_bar] = self.cur_partitions[a-1].vacancy_numbers[ret_row_bar] 

 

ret_row = ret_row_next 

ret_row_bar = ret_row_bar_next 

 

ret_row_next = self.cur_partitions[n-1].remove_cell(ell[n-1]) 

 

self._update_vacancy_numbers(n - 2) 

if ret_row is not None: 

self.cur_partitions[n-2].rigging[ret_row] = self.cur_partitions[n-2].vacancy_numbers[ret_row] 

if ret_row_bar is not None: 

self.cur_partitions[n-2].rigging[ret_row_bar] = self.cur_partitions[n-2].vacancy_numbers[ret_row_bar] 

 

self._update_vacancy_numbers(n - 1) 

if ret_row_next is not None: 

self.cur_partitions[n-1].rigging[ret_row_next] = self.cur_partitions[n-1].vacancy_numbers[ret_row_next] 

 

return(b)