Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

r""" 

Bijection classes for type `C_n^{(1)}`. 

 

Part of the (internal) classes which runs the bijection between rigged 

configurations and KR tableaux of type `C_n^{(1)}`. 

 

AUTHORS: 

 

- Travis Scrimshaw (2012-12-21): Initial version 

 

TESTS:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['C', 3, 1], [[2,1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_C import KRTToRCBijectionTypeC 

sage: bijection = KRTToRCBijectionTypeC(KRT(pathlist=[[-1,2]])) 

sage: TestSuite(bijection).run() 

sage: RC = RiggedConfigurations(['C', 3, 1], [[2, 1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_C import RCToKRTBijectionTypeC 

sage: bijection = RCToKRTBijectionTypeC(RC(partition_list=[[],[],[]])) 

sage: TestSuite(bijection).run() 

""" 

 

#***************************************************************************** 

# Copyright (C) 2012 Travis Scrimshaw <tscrim@ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.combinat.rigged_configurations.bij_type_A import KRTToRCBijectionTypeA 

from sage.combinat.rigged_configurations.bij_type_A import RCToKRTBijectionTypeA 

 

class KRTToRCBijectionTypeC(KRTToRCBijectionTypeA): 

r""" 

Specific implementation of the bijection from KR tableaux to rigged 

configurations for type `C_n^{(1)}`. 

 

This inherits from type `A_n^{(1)}` because we use the same methods in 

some places. 

""" 

 

def next_state(self, val): 

r""" 

Build the next state for type `C_n^{(1)}`. 

 

TESTS:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['C', 3, 1], [[2,1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_C import KRTToRCBijectionTypeC 

sage: bijection = KRTToRCBijectionTypeC(KRT(pathlist=[[-1,2]])) 

sage: bijection.cur_path.insert(0, []) 

sage: bijection.cur_dims.insert(0, [0, 1]) 

sage: bijection.cur_path[0].insert(0, [2]) 

sage: bijection.next_state(2) 

""" 

# Note that we must subtract 1 from n to match the indices. 

n = self.n 

tableau_height = len(self.cur_path[0]) - 1 

 

# If it is a regular value, we follow the A_n rules 

if val > 0: 

KRTToRCBijectionTypeA.next_state(self, val) 

return 

 

pos_val = -val 

case_S = [None] * n 

 

# Always add a cell to the first singular value in the first 

# tableau we are updating. 

if len(self.ret_rig_con[pos_val - 1]) > 0: 

max_width = self.ret_rig_con[pos_val - 1][0] 

else: 

max_width = 1 

 

# Special case for inserting -n 

if pos_val == n: 

max_width *= 2 

 

# Add cells similar to type A_n but we move to the right until we 

# reach the value of n 

for a in range(pos_val - 1, n - 1): 

max_width = self.ret_rig_con[a].insert_cell(max_width) 

case_S[a] = max_width 

 

# Special case for n 

max_width = self.ret_rig_con[n-1].insert_cell(max_width // 2) * 2 

 

# Now go back following the special C_n rules 

for a in reversed(range(tableau_height, n - 1)): 

if case_S[a] == max_width: 

self._insert_cell_case_S(self.ret_rig_con[a]) 

else: 

max_width = self.ret_rig_con[a].insert_cell(max_width) 

self._update_vacancy_nums(a + 1) 

self._update_partition_values(a + 1) 

 

# Update the final rigged partitions 

if tableau_height < n: 

self._update_vacancy_nums(tableau_height) 

self._update_partition_values(tableau_height) 

 

if pos_val <= tableau_height: 

for a in range(pos_val-1, tableau_height): 

self._update_vacancy_nums(a) 

self._update_partition_values(a) 

if pos_val > 1: 

self._update_vacancy_nums(pos_val - 2) 

self._update_partition_values(pos_val - 2) 

elif tableau_height > 0: 

self._update_vacancy_nums(tableau_height - 1) 

self._update_partition_values(tableau_height - 1) 

 

def _insert_cell_case_S(self, partition): 

""" 

Insert a cell when case `(S)` holds. 

 

TESTS:: 

 

sage: RC = RiggedConfigurations(['C', 2, 1], [[2, 2]]) 

sage: RP = RC(partition_list=[[2],[2,2]])[1] 

sage: RP 

-4[ ][ ]-4 

-4[ ][ ]-4 

<BLANKLINE> 

sage: RP.rigging[0] = None 

sage: from sage.combinat.rigged_configurations.bij_type_C import KRTToRCBijectionTypeC 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['C', 3, 1], [[2,1]]) 

sage: bijection = KRTToRCBijectionTypeC(KRT(pathlist=[[-1,2]])) 

sage: bijection._insert_cell_case_S(RP) 

sage: RP 

-4[ ][ ][ ]None 

-4[ ][ ]-4 

<BLANKLINE> 

""" 

# Special case when adding twice to the first row 

if partition.rigging[0] is None: 

partition._list[0] += 1 

return 

 

num_rows = len(partition) 

for i in reversed(range(1, num_rows)): 

if partition.rigging[i] is None: 

j = i - 1 

while j >= 0 and partition._list[j] == partition._list[i]: 

partition.rigging[j+1] = partition.rigging[j] # Shuffle it along 

j -= 1 

partition._list[j+1] += 1 

partition.rigging[j+1] = None 

return 

 

class RCToKRTBijectionTypeC(RCToKRTBijectionTypeA): 

r""" 

Specific implementation of the bijection from rigged configurations to 

tensor products of KR tableaux for type `C_n^{(1)}`. 

""" 

 

def next_state(self, height): 

r""" 

Build the next state for type `C_n^{(1)}`. 

 

TESTS:: 

 

sage: RC = RiggedConfigurations(['C', 3, 1], [[2, 1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_C import RCToKRTBijectionTypeC 

sage: bijection = RCToKRTBijectionTypeC(RC(partition_list=[[2],[2],[1]])) 

sage: bijection.next_state(1) 

-1 

""" 

height -= 1 # indexing 

n = self.n 

ell = [None] * (2*n) 

case_S = [False] * n 

b = None 

 

# Calculate the rank and ell values 

 

last_size = 0 

for a in range(height, n-1): 

ell[a] = self._find_singular_string(self.cur_partitions[a], last_size) 

 

if ell[a] is None: 

b = a + 1 

break 

else: 

last_size = self.cur_partitions[a][ell[a]] 

 

# Special case for n 

if b is None: 

# Since we are dividing by 2, we can use the identity of 

# ceiling = floor + remainder 

ell[n-1] = self._find_singular_string(self.cur_partitions[n-1], 

(last_size // 2) + (last_size % 2)) 

 

if ell[n-1] is None: 

b = n 

else: 

last_size = self.cur_partitions[n-1][ell[n-1]] * 2 

 

if b is None: 

# Now go back 

ell[2*n-1] = ell[n-1] 

case_S[n-1] = True 

for a in reversed(range(n-1)): 

if a >= height and self.cur_partitions[a][ell[a]] == last_size: 

ell[n+a] = ell[a] 

case_S[a] = True 

else: # note last_size > 1 

ell[n+a] = self._find_singular_string(self.cur_partitions[a], last_size) 

 

if ell[n + a] is None: 

b = -(a + 2) 

break 

else: 

last_size = self.cur_partitions[a][ell[n + a]] 

 

if b is None: 

b = -1 

 

# Determine the new rigged configuration by removing boxes from the 

# selected string and then making the new string singular 

if case_S[0]: 

row_num = self.cur_partitions[0].remove_cell(ell[0], 2) 

row_num_bar = None 

else: 

row_num = self.cur_partitions[0].remove_cell(ell[0]) 

row_num_bar = self.cur_partitions[0].remove_cell(ell[n]) 

for a in range(1, n-1): 

if case_S[a]: 

row_num_next = self.cur_partitions[a].remove_cell(ell[a], 2) 

row_num_bar_next = None 

else: 

row_num_next = self.cur_partitions[a].remove_cell(ell[a]) 

row_num_bar_next = self.cur_partitions[a].remove_cell(ell[n+a]) 

 

self._update_vacancy_numbers(a - 1) 

if row_num is not None: 

self.cur_partitions[a-1].rigging[row_num] = self.cur_partitions[a-1].vacancy_numbers[row_num] 

if row_num_bar is not None: 

self.cur_partitions[a-1].rigging[row_num_bar] = self.cur_partitions[a-1].vacancy_numbers[row_num_bar] 

row_num = row_num_next 

row_num_bar = row_num_bar_next 

 

row_num_next = self.cur_partitions[n-1].remove_cell(ell[n-1]) 

 

self._update_vacancy_numbers(n - 2) 

if row_num is not None: 

self.cur_partitions[n-2].rigging[row_num] = self.cur_partitions[n-2].vacancy_numbers[row_num] 

if row_num_bar is not None: 

self.cur_partitions[n-2].rigging[row_num_bar] = self.cur_partitions[n-2].vacancy_numbers[row_num_bar] 

 

self._update_vacancy_numbers(n - 1) 

if row_num_next is not None: 

self.cur_partitions[n-1].rigging[row_num_next] = self.cur_partitions[n-1].vacancy_numbers[row_num_next] 

 

return(b)