Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

r""" 

Bijection classes for type `D_4^{(3)}`. 

 

Part of the (internal) classes which runs the bijection between rigged 

configurations and KR tableaux of type `D_4^{(3)}`. 

 

AUTHORS: 

 

- Travis Scrimshaw (2014-09-10): Initial version 

 

TESTS:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 3], [[2, 1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_D_tri import KRTToRCBijectionTypeDTri 

sage: bijection = KRTToRCBijectionTypeDTri(KRT(pathlist=[[-1,2]])) 

sage: TestSuite(bijection).run() 

sage: RC = RiggedConfigurations(['D', 4, 3], [[2, 1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_D_tri import RCToKRTBijectionTypeDTri 

sage: bijection = RCToKRTBijectionTypeDTri(RC(partition_list=[[],[]])) 

sage: TestSuite(bijection).run() 

""" 

 

#***************************************************************************** 

# Copyright (C) 2014 Travis Scrimshaw <tscrim@ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.combinat.rigged_configurations.bij_type_A import KRTToRCBijectionTypeA 

from sage.combinat.rigged_configurations.bij_type_A import RCToKRTBijectionTypeA 

 

class KRTToRCBijectionTypeDTri(KRTToRCBijectionTypeA): 

r""" 

Specific implementation of the bijection from KR tableaux to rigged 

configurations for type `D_4^{(3)}`. 

 

This inherits from type `A_n^{(1)}` because we use the same methods in 

some places. 

""" 

def next_state(self, val): 

r""" 

Build the next state for type `D_4^{(3)}`. 

 

TESTS:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 3], [[2,1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_D_tri import KRTToRCBijectionTypeDTri 

sage: bijection = KRTToRCBijectionTypeDTri(KRT(pathlist=[[-1,2]])) 

sage: bijection.cur_path.insert(0, []) 

sage: bijection.cur_dims.insert(0, [0, 1]) 

sage: bijection.cur_path[0].insert(0, [2]) 

sage: bijection.next_state(2) 

""" 

tableau_height = len(self.cur_path[0]) - 1 

 

if val == 'E': 

self.ret_rig_con[0].insert_cell(0) 

self.ret_rig_con[1].insert_cell(0) 

if tableau_height == 0: 

self.ret_rig_con[0].insert_cell(0) 

self._update_vacancy_nums(0) 

self._update_vacancy_nums(1) 

self._update_partition_values(0) 

self._update_partition_values(1) 

return 

 

if val > 0: 

# If it is a regular value, we follow the A_n rules 

KRTToRCBijectionTypeA.next_state(self, val) 

return 

 

pos_val = -val 

 

if pos_val == 0: 

if len(self.ret_rig_con[0]) > 0: 

max_width = self.ret_rig_con[0][0] 

else: 

max_width = 1 

max_width = self.ret_rig_con[0].insert_cell(max_width) 

width_n = max_width + 1 

 

# Follow regular A_n rules 

for a in reversed(range(tableau_height, 2)): 

max_width = self.ret_rig_con[a].insert_cell(max_width) 

self._update_vacancy_nums(0) 

self._update_partition_values(0) 

self._update_vacancy_nums(1) 

self._update_partition_values(1) 

 

# Make the largest string at \nu^{(1)} quasi-singular 

p = self.ret_rig_con[0] 

num_rows = len(p) 

for i in range(num_rows): 

if p._list[i] == width_n: 

j = i+1 

while j < num_rows and p._list[j] == width_n \ 

and p.vacancy_numbers[j] == p.rigging[j]: 

j += 1 

p.rigging[j-1] -= 1 

break 

return 

 

case_S = [None] * 2 

pos_val = -val 

 

if pos_val < 3: 

# Always add a cell to the first singular value in the first 

# tableau we are updating. 

if len(self.ret_rig_con[pos_val - 1]) > 0: 

max_width = self.ret_rig_con[pos_val - 1][0] 

else: 

max_width = 1 

 

# Add cells similar to type A_n but we move to the right 

for a in range(pos_val - 1, 2): 

max_width = self.ret_rig_con[a].insert_cell(max_width) 

case_S[a] = max_width 

else: 

if len(self.ret_rig_con[0]) > 0: 

max_width = self.ret_rig_con[0][0] 

else: 

max_width = 1 

 

# Special case for going through 0 

# If we find a quasi-singular string first, then we are in case (Q, S) 

# otherwise we will find a singular string and insert 2 cells 

P = self.ret_rig_con[0] 

num_rows = len(P) 

case_QS = False 

for i in range(num_rows + 1): 

if i == num_rows: 

max_width = 0 

if case_QS: 

P._list.append(1) 

P.vacancy_numbers.append(None) 

# Go through our partition until we find a length of greater than 1 

j = len(P._list) - 1 

while j >= 0 and P._list[j] == 1: 

j -= 1 

P.rigging.insert(j + 1, None) 

width_n = 1 

else: 

# Go through our partition until we find a length of greater than 2 

j = len(P._list) - 1 

while j >= 0 and P._list[j] <= 2: 

j -= 1 

P._list.insert(j+1, 2) 

P.vacancy_numbers.insert(j+1, None) 

P.rigging.insert(j+1, None) 

break 

elif P._list[i] <= max_width: 

if P.vacancy_numbers[i] == P.rigging[i]: 

max_width = P._list[i] 

if case_QS: 

P._list[i] += 1 

width_n = P._list[i] 

P.rigging[i] = None 

else: 

j = i - 1 

while j >= 0 and P._list[j] <= max_width + 2: 

P.rigging[j+1] = P.rigging[j] # Shuffle it along 

j -= 1 

P._list.pop(i) 

P._list.insert(j+1, max_width + 2) 

P.rigging[j+1] = None 

break 

elif P.vacancy_numbers[i] - 1 == P.rigging[i] and not case_QS: 

case_QS = True 

P._list[i] += 1 

P.rigging[i] = None 

# No need to set max_width here since we will find a singular string 

 

# Now go back following the regular C_n (ish) rules 

if case_S[1] == max_width: 

P = self.ret_rig_con[1] 

 

# Special case when adding twice to the first row 

if P.rigging[0] is None: 

P._list[0] += 1 

else: 

for i in reversed(range(1, len(P))): 

if P.rigging[i] is None: 

j = i - 1 

while j >= 0 and P._list[j] == P._list[i]: 

P.rigging[j+1] = P.rigging[j] # Shuffle it along 

j -= 1 

P._list[j+1] += 1 

P.rigging[j+1] = None 

break 

else: 

max_width = self.ret_rig_con[1].insert_cell(max_width) 

 

if tableau_height == 0: 

if case_S[0] == max_width: 

P = self.ret_rig_con[0] 

# Since this is on the way back, the added string we want 

# to bump will never be the first (largest) string 

for i in reversed(range(1, len(P))): 

if P.rigging[i] is None: 

j = i - 1 

while j >= 0 and P._list[j] == P._list[i]: 

P.rigging[j+1] = P.rigging[j] # Shuffle it along 

j -= 1 

P._list[j+1] += 1 

P.rigging[j+1] = None 

break 

else: 

max_width = self.ret_rig_con[0].insert_cell(max_width) 

 

self._update_vacancy_nums(0) 

self._update_partition_values(0) 

self._update_vacancy_nums(1) 

self._update_partition_values(1) 

 

if case_QS: 

# Make the new string quasi-singular 

num_rows = len(P) 

for i in range(num_rows): 

if P._list[i] == width_n: 

j = i+1 

while j < num_rows and P._list[j] == width_n \ 

and P.vacancy_numbers[j] == P.rigging[j]: 

j += 1 

P.rigging[j-1] -= 1 

break 

 

class RCToKRTBijectionTypeDTri(RCToKRTBijectionTypeA): 

r""" 

Specific implementation of the bijection from rigged configurations to 

tensor products of KR tableaux for type `D_4^{(3)}`. 

""" 

def next_state(self, height): 

r""" 

Build the next state for type `D_4^{(3)}`. 

 

TESTS:: 

 

sage: RC = RiggedConfigurations(['D', 4, 3], [[2, 1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_D_tri import RCToKRTBijectionTypeDTri 

sage: bijection = RCToKRTBijectionTypeDTri(RC(partition_list=[[3],[2]])) 

sage: bijection.next_state(2) 

-3 

""" 

height -= 1 # indexing 

ell = [None] * 6 

case_S = [False] * 3 

case_Q = False 

b = None 

 

# Calculate the rank and ell values 

 

last_size = 0 

for a in range(height, 2): 

ell[a] = self._find_singular_string(self.cur_partitions[a], last_size) 

 

if ell[a] is None: 

b = a + 1 

break 

else: 

last_size = self.cur_partitions[a][ell[a]] 

 

if b is None: 

partition = self.cur_partitions[0] 

# Modified version of _find_singular_string() 

for i in reversed(range(len(partition))): 

if partition[i] >= last_size: 

if partition.vacancy_numbers[i] == partition.rigging[i] and i != ell[0]: 

if partition[i] == 1: 

b = 'E' 

else: 

last_size = partition[i] 

case_S[2] = True 

ell[3] = i 

break 

elif partition.vacancy_numbers[i] - 1 == partition.rigging[i] and not case_Q: 

case_Q = True 

# Check if the block is singular 

block_size = partition[i] 

for j in reversed(range(i)): 

if partition[j] != block_size: 

break 

elif partition.vacancy_numbers[j] == partition.rigging[j] and j != ell[0]: 

case_Q = False 

break 

if case_Q: 

last_size = partition[i] + 1 

ell[2] = i 

 

if ell[3] is None: 

if not case_Q: 

b = 3 

else: 

b = 0 

 

if b is None: # Going back 

if self.cur_partitions[1][ell[1]] == last_size: 

ell[4] = ell[1] 

case_S[1] = True 

else: 

ell[4] = self._find_singular_string(self.cur_partitions[1], last_size) 

 

if ell[4] is None: 

b = -3 

else: 

last_size = self.cur_partitions[1][ell[4]] 

 

if b is None: # Final partition 

P = self.cur_partitions[0] 

if ell[0] is not None and P[ell[0]] == last_size: 

ell[5] = ell[0] 

case_S[0] = True 

else: 

# Modified form of _find_singular_string 

end = ell[3] 

for i in reversed(range(end)): 

if P[i] >= last_size and P.vacancy_numbers[i] == P.rigging[i]: 

ell[5] = i 

break 

 

if ell[5] is None: 

b = -2 

 

if b is None: 

b = -1 

 

# Determine the new rigged configuration by removing boxes from the 

# selected string and then making the new string singular 

if case_S[1]: 

row1 = [self.cur_partitions[1].remove_cell(ell[4], 2)] 

else: 

row1 = [self.cur_partitions[1].remove_cell(ell[1]), 

self.cur_partitions[1].remove_cell(ell[4])] 

 

if case_S[0]: 

row0 = [self.cur_partitions[0].remove_cell(ell[5], 2)] 

row0.append( self.cur_partitions[0].remove_cell(ell[3], 2) ) 

else: 

if case_Q: 

if ell[0] < ell[2]: 

row0 = [self.cur_partitions[0].remove_cell(ell[2]), 

self.cur_partitions[0].remove_cell(ell[0])] 

else: 

row0 = [self.cur_partitions[0].remove_cell(ell[0]), 

self.cur_partitions[0].remove_cell(ell[2])] 

if case_S[2]: 

quasi = self.cur_partitions[0].remove_cell(ell[3]) 

else: 

row0 = [self.cur_partitions[0].remove_cell(ell[0])] 

if case_S[2]: 

row0.append( self.cur_partitions[0].remove_cell(ell[3], 2) ) 

 

row0.append( self.cur_partitions[0].remove_cell(ell[5]) ) 

 

self._update_vacancy_numbers(0) 

self._update_vacancy_numbers(1) 

 

for l in row1: 

if l is not None: 

self.cur_partitions[1].rigging[l] = self.cur_partitions[1].vacancy_numbers[l] 

for l in row0: 

if l is not None: 

self.cur_partitions[0].rigging[l] = self.cur_partitions[0].vacancy_numbers[l] 

 

# If case (Q,S) holds, then we must make the larger string quasisingular 

if case_Q and case_S[2]: 

P = self.cur_partitions[0] 

vac_num = P.vacancy_numbers[quasi] 

P.rigging[quasi] = vac_num 

block_len = P[quasi] 

j = quasi + 1 

length = len(P) 

# Find the place for the quasisingular rigging 

while j < length and P[j] == block_len and P.rigging[j] == vac_num: 

j += 1 

P.rigging[j-1] = vac_num - 1 

 

return(b)