Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

r""" 

Bijection classes for type `D_{n+1}^{(2)}`. 

 

Part of the (internal) classes which runs the bijection between rigged 

configurations and KR tableaux of type `D_{n+1}^{(2)}`. 

 

AUTHORS: 

 

- Travis Scrimshaw (2011-04-15): Initial version 

 

TESTS:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 2], [[2,1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_D_twisted import KRTToRCBijectionTypeDTwisted 

sage: bijection = KRTToRCBijectionTypeDTwisted(KRT(pathlist=[[-1,2]])) 

sage: TestSuite(bijection).run() 

sage: RC = RiggedConfigurations(['D', 4, 2], [[2, 1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_D_twisted import RCToKRTBijectionTypeDTwisted 

sage: bijection = RCToKRTBijectionTypeDTwisted(RC()) 

sage: TestSuite(bijection).run() 

""" 

 

#***************************************************************************** 

# Copyright (C) 2011, 2012 Travis Scrimshaw <tscrim@ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.combinat.rigged_configurations.bij_type_A import KRTToRCBijectionTypeA 

from sage.combinat.rigged_configurations.bij_type_A2_even import KRTToRCBijectionTypeA2Even 

from sage.combinat.rigged_configurations.bij_type_A2_even import RCToKRTBijectionTypeA2Even 

from sage.combinat.rigged_configurations.bij_type_D import KRTToRCBijectionTypeD 

from sage.combinat.rigged_configurations.bij_type_D import RCToKRTBijectionTypeD 

 

class KRTToRCBijectionTypeDTwisted(KRTToRCBijectionTypeD, KRTToRCBijectionTypeA2Even): 

r""" 

Specific implementation of the bijection from KR tableaux to rigged 

configurations for type `D_{n+1}^{(2)}`. 

 

This inherits from type `C_n^{(1)}` and `D_n^{(1)}` because we use the 

same methods in some places. 

""" 

def run(self, verbose=False): 

""" 

Run the bijection from a tensor product of KR tableaux to a rigged 

configuration for type `D_{n+1}^{(2)}`. 

 

INPUT: 

 

- ``tp_krt`` -- A tensor product of KR tableaux 

 

- ``verbose`` -- (Default: ``False``) Display each step in the 

bijection 

 

EXAMPLES:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 2], [[3,1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_D_twisted import KRTToRCBijectionTypeDTwisted 

sage: KRTToRCBijectionTypeDTwisted(KRT(pathlist=[[-1,3,2]])).run() 

<BLANKLINE> 

-1[ ]-1 

<BLANKLINE> 

0[ ]0 

<BLANKLINE> 

1[ ]1 

<BLANKLINE> 

""" 

if verbose: 

from sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element \ 

import TensorProductOfKirillovReshetikhinTableauxElement 

 

for cur_crystal in reversed(self.tp_krt): 

r = cur_crystal.parent().r() 

# Iterate through the columns 

for col_number, cur_column in enumerate(reversed(cur_crystal.to_array(False))): 

self.cur_path.insert(0, []) # Prepend an empty list 

 

# Check to see if we are a spinor column 

if r == self.n: 

if verbose: 

print("====================") 

print(repr(TensorProductOfKirillovReshetikhinTableauxElement(self.tp_krt.parent(), self.cur_path))) 

print("--------------------") 

print(repr(self.ret_rig_con)) 

print("--------------------\n") 

print("Applying doubling map") 

self.doubling_map() 

 

self.cur_dims.insert(0, [0, 1]) 

 

for letter in reversed(cur_column): 

self.cur_dims[0][0] += 1 

val = letter.value # Convert from a CrystalOfLetter to an Integer 

 

if verbose: 

print("====================") 

print(repr(TensorProductOfKirillovReshetikhinTableauxElement(self.tp_krt.parent(), self.cur_path))) 

print("--------------------") 

print(repr(self.ret_rig_con)) 

print("--------------------\n") 

 

# Build the next state 

self.cur_path[0].insert(0, [letter]) # Prepend the value 

self.next_state(val) 

 

# Check to see if we are a spinor column 

if r == self.n: 

if verbose: 

print("====================") 

print(repr(TensorProductOfKirillovReshetikhinTableauxElement(self.tp_krt.parent(), self.cur_path))) 

print("--------------------") 

print(repr(self.ret_rig_con)) 

print("--------------------\n") 

print("Applying halving map") 

self.halving_map() 

 

# If we've split off a column, we need to merge the current column 

# to the current crystal tableau 

if col_number > 0: 

for i, letter_singleton in enumerate(self.cur_path[0]): 

self.cur_path[1][i].insert(0, letter_singleton[0]) 

self.cur_dims[1][1] += 1 

self.cur_path.pop(0) 

self.cur_dims.pop(0) 

 

# And perform the inverse column splitting map on the RC 

for a in range(self.n): 

self._update_vacancy_nums(a) 

 

self.ret_rig_con.set_immutable() # Return it to immutable 

return self.ret_rig_con 

 

def next_state(self, val): 

r""" 

Build the next state for type `D_{n+1}^{(2)}`. 

 

TESTS:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 2], [[2,1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_D_twisted import KRTToRCBijectionTypeDTwisted 

sage: bijection = KRTToRCBijectionTypeDTwisted(KRT(pathlist=[[-1,2]])) 

sage: bijection.cur_path.insert(0, []) 

sage: bijection.cur_dims.insert(0, [0, 1]) 

sage: bijection.cur_path[0].insert(0, [2]) 

sage: bijection.next_state(2) 

""" 

n = self.n 

tableau_height = len(self.cur_path[0]) - 1 

 

if val == 'E': 

KRTToRCBijectionTypeA2Even.next_state(self, val) 

return 

elif val > 0: 

# If it is a regular value, we follow the A_n rules 

KRTToRCBijectionTypeA.next_state(self, val) 

if tableau_height >= n - 1: 

self._correct_vacancy_nums() 

return 

 

pos_val = -val 

 

if pos_val == 0: 

if len(self.ret_rig_con[pos_val - 1]) > 0: 

max_width = self.ret_rig_con[n-1][0] 

else: 

max_width = 1 

max_width = self.ret_rig_con[n-1].insert_cell(max_width) 

width_n = max_width + 1 

 

# Follow regular A_n rules 

for a in reversed(range(tableau_height, n-1)): 

max_width = self.ret_rig_con[a].insert_cell(max_width) 

self._update_vacancy_nums(a + 1) 

self._update_partition_values(a + 1) 

self._update_vacancy_nums(tableau_height) 

if tableau_height >= n - 1: 

self._correct_vacancy_nums() 

self._update_partition_values(tableau_height) 

if tableau_height > 0: 

self._update_vacancy_nums(tableau_height-1) 

self._update_partition_values(tableau_height-1) 

 

# Make the new string at n quasi-singular 

p = self.ret_rig_con[n-1] 

num_rows = len(p) 

for i in range(num_rows): 

if p._list[i] == width_n: 

j = i+1 

while j < num_rows and p._list[j] == width_n \ 

and p.vacancy_numbers[j] == p.rigging[j]: 

j += 1 

p.rigging[j-1] -= 1 

break 

return 

 

case_S = [None] * n 

pos_val = -val 

 

# Always add a cell to the first singular value in the first 

# tableau we are updating. 

if len(self.ret_rig_con[pos_val - 1]) > 0: 

max_width = self.ret_rig_con[pos_val - 1][0] 

else: 

max_width = 1 

 

# Add cells similar to type A_n but we move to the right until we 

# reach the value of n-1 

for a in range(pos_val - 1, n-1): 

max_width = self.ret_rig_con[a].insert_cell(max_width) 

case_S[a] = max_width 

 

# Special case for n 

# If we find a quasi-singular string first, then we are in case (Q, S) 

# otherwise we will find a singular string and insert 2 cells 

partition = self.ret_rig_con[n-1] 

num_rows = len(partition) 

case_QS = False 

for i in range(num_rows + 1): 

if i == num_rows: 

max_width = 0 

if case_QS: 

partition._list.append(1) 

partition.vacancy_numbers.append(None) 

# Go through our partition until we find a length of greater than 1 

j = len(partition._list) - 1 

while j >= 0 and partition._list[j] == 1: 

j -= 1 

partition.rigging.insert(j + 1, None) 

width_n = 1 

else: 

# Go through our partition until we find a length of greater than 2 

j = len(partition._list) - 1 

while j >= 0 and partition._list[j] <= 2: 

j -= 1 

partition._list.insert(j+1, 2) 

partition.vacancy_numbers.insert(j+1, None) 

partition.rigging.insert(j+1, None) 

break 

elif partition._list[i] <= max_width: 

if partition.vacancy_numbers[i] == partition.rigging[i]: 

max_width = partition._list[i] 

if case_QS: 

partition._list[i] += 1 

width_n = partition._list[i] 

partition.rigging[i] = None 

else: 

j = i - 1 

while j >= 0 and partition._list[j] <= max_width + 2: 

partition.rigging[j+1] = partition.rigging[j] # Shuffle it along 

j -= 1 

partition._list.pop(i) 

partition._list.insert(j+1, max_width + 2) 

partition.rigging[j+1] = None 

break 

elif partition.vacancy_numbers[i] - 1 == partition.rigging[i] and not case_QS: 

case_QS = True 

partition._list[i] += 1 

partition.rigging[i] = None 

# No need to set max_width here since we will find a singular string 

 

# Now go back following the regular C_n (ish) rules 

for a in reversed(range(tableau_height, n-1)): 

if case_S[a] == max_width: 

self._insert_cell_case_S(self.ret_rig_con[a]) 

else: 

max_width = self.ret_rig_con[a].insert_cell(max_width) 

self._update_vacancy_nums(a + 1) 

self._update_partition_values(a + 1) 

 

# Update the final rigged partitions 

self._update_vacancy_nums(tableau_height) 

if tableau_height >= n - 1: 

self._correct_vacancy_nums() 

self._update_partition_values(tableau_height) 

 

if pos_val <= tableau_height: 

for a in range(pos_val-1, tableau_height): 

self._update_vacancy_nums(a) 

self._update_partition_values(a) 

if pos_val > 1: 

self._update_vacancy_nums(pos_val - 2) 

self._update_partition_values(pos_val - 2) 

elif tableau_height > 0: 

self._update_vacancy_nums(tableau_height - 1) 

self._update_partition_values(tableau_height - 1) 

 

if case_QS: 

# Make the new string quasi-singular 

num_rows = len(partition) 

for i in range(num_rows): 

if partition._list[i] == width_n: 

j = i+1 

while j < num_rows and partition._list[j] == width_n \ 

and partition.vacancy_numbers[j] == partition.rigging[j]: 

j += 1 

partition.rigging[j-1] -= 1 

break 

 

class RCToKRTBijectionTypeDTwisted(RCToKRTBijectionTypeD, RCToKRTBijectionTypeA2Even): 

r""" 

Specific implementation of the bijection from rigged configurations to 

tensor products of KR tableaux for type `D_{n+1}^{(2)}`. 

""" 

def run(self, verbose=False, build_graph=False): 

""" 

Run the bijection from rigged configurations to tensor product of KR 

tableaux for type `D_{n+1}^{(2)}`. 

 

INPUT: 

 

- ``verbose`` -- (default: ``False``) display each step in the 

bijection 

- ``build_graph`` -- (default: ``False``) build the graph of each 

step of the bijection 

 

EXAMPLES:: 

 

sage: RC = RiggedConfigurations(['D', 4, 2], [[3, 1]]) 

sage: x = RC(partition_list=[[],[1],[1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_D_twisted import RCToKRTBijectionTypeDTwisted 

sage: RCToKRTBijectionTypeDTwisted(x).run() 

[[1], [3], [-2]] 

sage: bij = RCToKRTBijectionTypeDTwisted(x) 

sage: bij.run(build_graph=True) 

[[1], [3], [-2]] 

sage: bij._graph 

Digraph on 6 vertices 

""" 

from sage.combinat.crystals.letters import CrystalOfLetters 

letters = CrystalOfLetters(self.rigged_con.parent()._cartan_type.classical()) 

 

# This is technically bad, but because the first thing we do is append 

# an empty list to ret_crystal_path, we correct this. We do it this 

# way so that we do not have to remove an empty list after the 

# bijection has been performed. 

ret_crystal_path = [] 

 

for dim in self.rigged_con.parent().dims: 

ret_crystal_path.append([]) 

 

# Iterate over each column 

for dummy_var in range(dim[1]): 

# Split off a new column if necessary 

if self.cur_dims[0][1] > 1: 

self.cur_dims[0][1] -= 1 

self.cur_dims.insert(0, [dim[0], 1]) 

 

# Perform the corresponding splitting map on rigged configurations 

# All it does is update the vacancy numbers on the RC side 

for a in range(self.n): 

self._update_vacancy_numbers(a) 

 

if build_graph: 

y = self.rigged_con.parent()(*[x._clone() for x in self.cur_partitions], use_vacancy_numbers=True) 

self._graph.append([self._graph[-1][1], (y, len(self._graph)), 'ls']) 

 

# Check to see if we are a spinor 

if dim[0] == self.n: 

if verbose: 

print("====================") 

print(repr(self.rigged_con.parent()(*self.cur_partitions, use_vacancy_numbers=True))) 

print("--------------------") 

print(ret_crystal_path) 

print("--------------------\n") 

print("Applying doubling map") 

self.doubling_map() 

 

if build_graph: 

y = self.rigged_con.parent()(*[x._clone() for x in self.cur_partitions], use_vacancy_numbers=True) 

self._graph.append([self._graph[-1][1], (y, len(self._graph)), '2x']) 

 

while self.cur_dims[0][0] > 0: 

if verbose: 

print("====================") 

print(repr(self.rigged_con.parent()(*self.cur_partitions, use_vacancy_numbers=True))) 

print("--------------------") 

print(ret_crystal_path) 

print("--------------------\n") 

 

self.cur_dims[0][0] -= 1 # This takes care of the indexing 

b = self.next_state(self.cur_dims[0][0]) 

 

# Make sure we have a crystal letter 

ret_crystal_path[-1].append(letters(b)) # Append the rank 

 

if build_graph: 

y = self.rigged_con.parent()(*[x._clone() for x in self.cur_partitions], use_vacancy_numbers=True) 

self._graph.append([self._graph[-1][1], (y, len(self._graph)), letters(b)]) 

 

self.cur_dims.pop(0) # Pop off the leading column 

 

# Check to see if we were a spinor 

if dim[0] == self.n: 

if verbose: 

print("====================") 

print(repr(self.rigged_con.parent()(*self.cur_partitions))) 

print("--------------------") 

print(ret_crystal_path) 

print("--------------------\n") 

print("Applying halving map") 

self.halving_map() 

 

if build_graph: 

y = self.rigged_con.parent()(*[x._clone() for x in self.cur_partitions], use_vacancy_numbers=True) 

self._graph.append([self._graph[-1][1], (y, len(self._graph)), '1/2x']) 

 

if build_graph: 

self._graph.pop(0) # Remove the dummy at the start 

from sage.graphs.digraph import DiGraph 

from sage.graphs.dot2tex_utils import have_dot2tex 

self._graph = DiGraph(self._graph) 

if have_dot2tex(): 

self._graph.set_latex_options(format="dot2tex", edge_labels=True) 

 

return self.KRT(pathlist=ret_crystal_path) 

 

def next_state(self, height): 

r""" 

Build the next state for type `D_{n+1}^{(2)}`. 

 

TESTS:: 

 

sage: RC = RiggedConfigurations(['D', 4, 2], [[2, 1]]) 

sage: from sage.combinat.rigged_configurations.bij_type_D_twisted import RCToKRTBijectionTypeDTwisted 

sage: bijection = RCToKRTBijectionTypeDTwisted(RC(partition_list=[[2],[2,2],[2,2]])) 

sage: bijection.next_state(0) 

-1 

""" 

n = self.n 

ell = [None] * (2*n) 

case_S = [False] * n 

case_Q = False 

b = None 

 

# Calculate the rank and ell values 

 

last_size = 0 

for a in range(height, n-1): 

ell[a] = self._find_singular_string(self.cur_partitions[a], last_size) 

 

if ell[a] is None: 

b = a + 1 

break 

else: 

last_size = self.cur_partitions[a][ell[a]] 

 

if b is None: 

partition = self.cur_partitions[n-1] 

# Modified version of _find_singular_string() 

for i in reversed(range(len(partition))): 

if partition[i] >= last_size: 

if partition.vacancy_numbers[i] == partition.rigging[i]: 

if partition[i] == 1: 

b = 'E' 

else: 

last_size = partition[i] 

case_S[n-1] = True 

ell[2*n-1] = i 

break 

elif partition.vacancy_numbers[i] - 1 == partition.rigging[i] and not case_Q: 

case_Q = True 

# Check if it is singular as well 

block_size = partition[i] 

for j in reversed(range(i)): 

if partition[j] != block_size: 

break 

elif partition.vacancy_numbers[j] == partition.rigging[j]: 

case_Q = False 

break 

if case_Q: 

last_size = partition[i] + 1 

ell[n-1] = i 

 

if ell[2*n-1] is None: 

if not case_Q: 

b = n 

else: 

b = 0 

 

if b is None: 

# Now go back 

for a in reversed(range(n-1)): 

if a >= height and self.cur_partitions[a][ell[a]] == last_size: 

ell[n+a] = ell[a] 

case_S[a] = True 

else: 

ell[n+a] = self._find_singular_string(self.cur_partitions[a], last_size) 

 

if ell[n + a] is None: 

b = -(a + 2) 

break 

else: 

last_size = self.cur_partitions[a][ell[n + a]] 

 

if b is None: 

b = -1 

 

# Determine the new rigged configuration by removing boxes from the 

# selected string and then making the new string singular 

if case_S[0]: 

row_num = None 

row_num_bar = self.cur_partitions[0].remove_cell(ell[n], 2) 

else: 

row_num = self.cur_partitions[0].remove_cell(ell[0]) 

row_num_bar = self.cur_partitions[0].remove_cell(ell[n]) 

for a in range(1, n-1): 

if case_S[a]: 

row_num_next = None 

row_num_bar_next = self.cur_partitions[a].remove_cell(ell[n+a], 2) 

else: 

row_num_next = self.cur_partitions[a].remove_cell(ell[a]) 

row_num_bar_next = self.cur_partitions[a].remove_cell(ell[n+a]) 

 

self._update_vacancy_numbers(a - 1) 

if row_num is not None: 

self.cur_partitions[a-1].rigging[row_num] = self.cur_partitions[a-1].vacancy_numbers[row_num] 

if row_num_bar is not None: 

self.cur_partitions[a-1].rigging[row_num_bar] = self.cur_partitions[a-1].vacancy_numbers[row_num_bar] 

row_num = row_num_next 

row_num_bar = row_num_bar_next 

 

if case_Q: 

row_num_next = self.cur_partitions[n-1].remove_cell(ell[n-1]) 

if case_S[n-1]: 

row_num_bar_next = self.cur_partitions[n-1].remove_cell(ell[2*n-1]) 

else: 

row_num_bar_next = None 

elif case_S[n-1]: 

row_num_next = None 

row_num_bar_next = self.cur_partitions[n-1].remove_cell(ell[2*n-1], 2) 

else: 

row_num_next = None 

row_num_bar_next = None 

 

self._update_vacancy_numbers(n - 2) 

if row_num is not None: 

self.cur_partitions[n-2].rigging[row_num] = self.cur_partitions[n-2].vacancy_numbers[row_num] 

if row_num_bar is not None: 

self.cur_partitions[n-2].rigging[row_num_bar] = self.cur_partitions[n-2].vacancy_numbers[row_num_bar] 

 

self._update_vacancy_numbers(n - 1) 

if height == n: 

self._correct_vacancy_nums() 

if row_num_next is not None: 

self.cur_partitions[n-1].rigging[row_num_next] = self.cur_partitions[n-1].vacancy_numbers[row_num_next] 

if row_num_bar_next is not None: 

if case_Q: 

vac_num = self.cur_partitions[n-1].vacancy_numbers[row_num_bar_next] 

self.cur_partitions[n-1].rigging[row_num_bar_next] = vac_num 

block_len = self.cur_partitions[n-1][row_num_bar_next] 

j = row_num_bar_next + 1 

length = len(self.cur_partitions[n-1]) 

# Find the place for the quasisingular rigging 

while j < length and self.cur_partitions[n-1][j] == block_len \ 

and self.cur_partitions[n-1].rigging[j] == vac_num: 

j += 1 

self.cur_partitions[n-1].rigging[j-1] = vac_num - 1 

else: 

self.cur_partitions[n-1].rigging[row_num_bar_next] = self.cur_partitions[n-1].vacancy_numbers[row_num_bar_next] 

 

return(b)