Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

r""" 

Tensor Product of Kirillov-Reshetikhin Tableaux Elements 

 

A tensor product of 

:class:`~sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement`. 

 

AUTHORS: 

 

- Travis Scrimshaw (2010-09-26): Initial version 

""" 

 

#***************************************************************************** 

# Copyright (C) 2010, 2011, 2012 Travis Scrimshaw <tscrim@ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

 

from six.moves import range 

 

from sage.combinat.crystals.tensor_product import TensorProductOfRegularCrystalsElement 

 

class TensorProductOfKirillovReshetikhinTableauxElement(TensorProductOfRegularCrystalsElement): 

""" 

An element in a tensor product of Kirillov-Reshetikhin tableaux. 

 

For more on tensor product of Kirillov-Reshetikhin tableaux, see 

:class:`~sage.combinat.rigged_configurations.tensor_product_kr_tableaux.TensorProductOfKirillovReshetikhinTableaux`. 

 

The most common way to construct an element is to specify the option 

``pathlist`` which is a list of lists which will be used to generate 

the individual factors of 

:class:`~sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableauxElement`. 

 

EXAMPLES: 

 

Type `A_n^{(1)}` examples:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 3, 1], [[1,1], [2,1], [1,1], [2,1], [2,1], [2,1]]) 

sage: T = KRT(pathlist=[[2], [4,1], [3], [4,2], [3,1], [2,1]]) 

sage: T 

[[2]] (X) [[1], [4]] (X) [[3]] (X) [[2], [4]] (X) [[1], [3]] (X) [[1], [2]] 

sage: T.to_rigged_configuration() 

<BLANKLINE> 

0[ ][ ]0 

1[ ]1 

<BLANKLINE> 

1[ ][ ]0 

1[ ]0 

1[ ]0 

<BLANKLINE> 

0[ ][ ]0 

<BLANKLINE> 

sage: T = KRT(pathlist=[[1], [2,1], [1], [4,1], [3,1], [2,1]]) 

sage: T 

[[1]] (X) [[1], [2]] (X) [[1]] (X) [[1], [4]] (X) [[1], [3]] (X) [[1], [2]] 

sage: T.to_rigged_configuration() 

<BLANKLINE> 

(/) 

<BLANKLINE> 

1[ ]0 

1[ ]0 

<BLANKLINE> 

0[ ]0 

<BLANKLINE> 

 

Type `D_n^{(1)}` examples:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1], [[1,1], [1,1], [1,1], [1,1]]) 

sage: T = KRT(pathlist=[[-1], [-1], [1], [1]]) 

sage: T 

[[-1]] (X) [[-1]] (X) [[1]] (X) [[1]] 

sage: T.to_rigged_configuration() 

<BLANKLINE> 

0[ ][ ]0 

0[ ][ ]0 

<BLANKLINE> 

0[ ][ ]0 

0[ ][ ]0 

<BLANKLINE> 

0[ ][ ]0 

<BLANKLINE> 

0[ ][ ]0 

<BLANKLINE> 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1], [[2,1], [1,1], [1,1], [1,1]]) 

sage: T = KRT(pathlist=[[3,2], [1], [-1], [1]]) 

sage: T 

[[2], [3]] (X) [[1]] (X) [[-1]] (X) [[1]] 

sage: T.to_rigged_configuration() 

<BLANKLINE> 

0[ ]0 

0[ ]0 

0[ ]0 

<BLANKLINE> 

0[ ]0 

0[ ]0 

0[ ]0 

<BLANKLINE> 

1[ ]0 

<BLANKLINE> 

1[ ]0 

<BLANKLINE> 

sage: T.to_rigged_configuration().to_tensor_product_of_kirillov_reshetikhin_tableaux() 

[[2], [3]] (X) [[1]] (X) [[-1]] (X) [[1]] 

""" 

def __init__(self, parent, list=[[]], **options): 

r""" 

Construct a TensorProductOfKirillovReshetikhinTableauxElement. 

 

INPUT: 

 

- ``parent`` -- Parent for this element 

 

- ``list`` -- The list of KR tableaux elements 

 

EXAMPLES:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 3, 1], [[1, 1], [2, 1], [1, 1], [2, 1], [2, 1], [2, 1]]) 

sage: T = KRT(pathlist=[[2], [4, 1], [3], [4, 2], [3, 1], [2, 1]]) 

sage: T 

[[2]] (X) [[1], [4]] (X) [[3]] (X) [[2], [4]] (X) [[1], [3]] (X) [[1], [2]] 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 3, 1], [[3,3], [2,1]]) 

sage: T = KRT(pathlist=[[3, 2, 1, 4, 2, 1, 4, 3, 1], [2, 1]]) 

sage: T 

[[1, 1, 1], [2, 2, 3], [3, 4, 4]] (X) [[1], [2]] 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1], [[2, 1], [1, 1], [1, 1], [1, 1]]) 

sage: T = KRT(pathlist=[[3,2], [1], [-1], [1]]) 

sage: T 

[[2], [3]] (X) [[1]] (X) [[-1]] (X) [[1]] 

sage: TestSuite(T).run() 

""" 

if "pathlist" in options: 

pathlist = options["pathlist"] 

TensorProductOfRegularCrystalsElement.__init__(self, parent, 

[parent.crystals[i](*tab) for i, tab in enumerate(pathlist)]) 

else: 

TensorProductOfRegularCrystalsElement.__init__(self, parent, list) 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1], [[2, 1], [1, 1], [1, 1], [1, 1]]) 

sage: T = KRT(pathlist=[[3,2], [1], [-1], [1]]) 

sage: T # indirect doctest 

[[2], [3]] (X) [[1]] (X) [[-1]] (X) [[1]] 

""" 

ret_str = repr(self[0]) 

for i in range(1, len(self)): 

ret_str += " (X) " + repr(self[i]) 

return(ret_str) 

 

def _repr_diagram(self): 

""" 

Return a string representation of ``self`` as a diagram. 

 

EXAMPLES:: 

 

sage: TPKRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',4,1], [[2,2],[3,1],[3,3]]) 

sage: print(TPKRT.module_generators[0]._repr_diagram()) 

1 1 (X) 1 (X) 1 1 1 

2 2 2 2 2 2 

3 3 3 3 

sage: Partitions.options(convention='French') 

sage: print(TPKRT.module_generators[0]._repr_diagram()) 

2 2 (X) 3 (X) 3 3 3 

1 1 2 2 2 2 

1 1 1 1 

sage: Partitions.options._reset() 

""" 

comp = [crys._repr_diagram().splitlines() for crys in self] 

num_comp = len(comp) # number of components 

col_len = [len(t) > 0 and len(t[0]) or 1 for t in comp] # columns per component 

num_rows = max(len(t) for t in comp) # number of rows 

 

# We take advantage of the fact the components are rectangular 

diag = '' 

diag += ' (X) '.join(c[0] for c in comp) 

for row in range(1, num_rows): 

diag += '\n' 

for c in range(num_comp): 

if c > 0: 

diag += ' ' # For the tensor symbol 

if row < len(comp[c]): 

diag += comp[c][row] 

else: 

diag += ' '*col_len[c] 

return diag 

 

def pp(self): 

""" 

Pretty print ``self``. 

 

EXAMPLES:: 

 

sage: TPKRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',4,1], [[2,2],[3,1],[3,3]]) 

sage: TPKRT.module_generators[0].pp() 

1 1 (X) 1 (X) 1 1 1 

2 2 2 2 2 2 

3 3 3 3 

""" 

print(self._repr_diagram()) 

 

def classical_weight(self): 

""" 

Return the classical weight of ``self``. 

 

EXAMPLES:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D',4,1], [[2,2]]) 

sage: elt = KRT(pathlist=[[3,2,-1,1]]); elt  

[[2, 1], [3, -1]] 

sage: elt.classical_weight() 

(0, 1, 1, 0) 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[2,2],[1,3]]) 

sage: elt = KRT(pathlist=[[2,1,3,2],[1,4,4]]); elt 

[[1, 2], [2, 3]] (X) [[1, 4, 4]] 

sage: elt.classical_weight() 

(2, 2, 1, 2) 

""" 

return sum([x.classical_weight() for x in self]) 

 

def lusztig_involution(self): 

r""" 

Return the result of the classical Lusztig involution on ``self``. 

 

EXAMPLES:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[2,2],[1,3]]) 

sage: elt = KRT(pathlist=[[2,1,3,2],[1,4,4]]) 

sage: li = elt.lusztig_involution(); li 

[[1, 1, 4]] (X) [[2, 3], [3, 4]] 

sage: li.parent() 

Tensor product of Kirillov-Reshetikhin tableaux of type ['A', 3, 1] and factor(s) ((1, 3), (2, 2)) 

""" 

from sage.combinat.rigged_configurations.tensor_product_kr_tableaux \ 

import TensorProductOfKirillovReshetikhinTableaux 

P = self.parent() 

P = TensorProductOfKirillovReshetikhinTableaux(P._cartan_type, reversed(P.dims)) 

return P(*[x.lusztig_involution() for x in reversed(self)]) 

 

def left_split(self): 

r""" 

Return the image of ``self`` under the left column splitting map. 

 

EXAMPLES:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[2,2],[1,3]]) 

sage: elt = KRT(pathlist=[[2,1,3,2],[1,4,4]]); elt.pp() 

1 2 (X) 1 4 4 

2 3 

sage: elt.left_split().pp() 

1 (X) 2 (X) 1 4 4 

2 3 

""" 

P = self.parent() 

if P.dims[0][1] == 1: 

raise ValueError("cannot split a single column") 

r,s = P.dims[0] 

B = [[r,1], [r,s-1]] 

B.extend(P.dims[1:]) 

from sage.combinat.rigged_configurations.tensor_product_kr_tableaux \ 

import TensorProductOfKirillovReshetikhinTableaux 

TP = TensorProductOfKirillovReshetikhinTableaux(P._cartan_type, B) 

x = self[0].left_split() 

return TP(*(list(x) + self[1:])) 

 

def right_split(self): 

r""" 

Return the image of ``self`` under the right column splitting map. 

 

EXAMPLES:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A',3,1], [[2,2],[1,3]]) 

sage: elt = KRT(pathlist=[[2,1,3,2],[1,4,4]]); elt.pp() 

1 2 (X) 1 4 4 

2 3 

sage: elt.right_split().pp() 

1 2 (X) 1 4 (X) 4 

2 3 

 

Let `\ast` denote the :meth:`Lusztig involution<lusztig_involution>`, 

we check that `\ast \circ \mathrm{ls} \circ \ast = \mathrm{rs}`:: 

 

sage: all(x.lusztig_involution().left_split().lusztig_involution() == x.right_split() for x in KRT) 

True 

""" 

P = self.parent() 

if P.dims[-1][1] == 1: 

raise ValueError("cannot split a single column") 

r,s = P.dims[-1] 

B = list(P.dims[:-1]) 

B.append([r, s-1]) 

B.append([r, 1]) 

from sage.combinat.rigged_configurations.tensor_product_kr_tableaux \ 

import TensorProductOfKirillovReshetikhinTableaux 

TP = TensorProductOfKirillovReshetikhinTableaux(P._cartan_type, B) 

x = self[-1].right_split() 

return TP(*(self[:-1] + list(x))) 

 

def to_rigged_configuration(self, display_steps=False): 

r""" 

Perform the bijection from ``self`` to a 

:class:`rigged configuration<sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement>` 

which is described in [RigConBijection]_, [BijectionLRT]_, and 

[BijectionDn]_. 

 

.. NOTE:: 

 

This is only proven to be a bijection in types `A_n^{(1)}` 

and `D_n^{(1)}`, as well as `\bigotimes_i B^{r_i,1}` and 

`\bigotimes_i B^{1,s_i}` for general affine types. 

 

INPUT: 

 

- ``display_steps`` -- (default: ``False``) Boolean which indicates 

if we want to output each step in the algorithm. 

 

OUTPUT: 

 

The rigged configuration corresponding to ``self``. 

 

EXAMPLES: 

 

Type `A_n^{(1)}` example:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 3, 1], [[2,1], [2,1], [2,1]]) 

sage: T = KRT(pathlist=[[4, 2], [3, 1], [2, 1]]) 

sage: T 

[[2], [4]] (X) [[1], [3]] (X) [[1], [2]] 

sage: T.to_rigged_configuration() 

<BLANKLINE> 

0[ ]0 

<BLANKLINE> 

1[ ]1 

1[ ]0 

<BLANKLINE> 

0[ ]0 

<BLANKLINE> 

 

Type `D_n^{(1)}` example:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1], [[2,2]]) 

sage: T = KRT(pathlist=[[2,1,4,3]]) 

sage: T 

[[1, 3], [2, 4]] 

sage: T.to_rigged_configuration() 

<BLANKLINE> 

0[ ]0 

<BLANKLINE> 

-1[ ]-1 

-1[ ]-1 

<BLANKLINE> 

0[ ]0 

<BLANKLINE> 

(/) 

 

Type `D_n^{(1)}` spinor example:: 

 

sage: CP = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 5, 1], [[5,1],[2,1],[1,1],[1,1],[1,1]]) 

sage: elt = CP(pathlist=[[-2,-5,4,3,1],[-1,2],[1],[1],[1]]) 

sage: elt 

[[1], [3], [4], [-5], [-2]] (X) [[2], [-1]] (X) [[1]] (X) [[1]] (X) [[1]] 

sage: elt.to_rigged_configuration() 

<BLANKLINE> 

2[ ][ ]1 

<BLANKLINE> 

0[ ][ ]0 

0[ ]0 

<BLANKLINE> 

0[ ][ ]0 

0[ ]0 

<BLANKLINE> 

0[ ]0 

<BLANKLINE> 

0[ ][ ]0 

<BLANKLINE> 

 

This is invertible by calling 

:meth:`~sage.combinat.rigged_configurations.rigged_configuration_element.RiggedConfigurationElement.to_tensor_product_of_kirillov_reshetikhin_tableaux()`:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 1], [[2,2]]) 

sage: T = KRT(pathlist=[[2,1,4,3]]) 

sage: rc = T.to_rigged_configuration() 

sage: ret = rc.to_tensor_product_of_kirillov_reshetikhin_tableaux(); ret 

[[1, 3], [2, 4]] 

sage: ret == T 

True 

""" 

from sage.combinat.rigged_configurations.bijection import KRTToRCBijection 

return KRTToRCBijection(self).run(display_steps) 

 

def to_tensor_product_of_kirillov_reshetikhin_crystals(self): 

""" 

Return a tensor product of Kirillov-Reshetikhin crystals corresponding 

to ``self``. 

 

This works by performing the filling map on each individual factor. 

For more on the filling map, see 

:class:`~sage.combinat.rigged_configurations.kr_tableaux.KirillovReshetikhinTableaux`. 

 

EXAMPLES:: 

 

sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D',4,1], [[1,1],[2,2]]) 

sage: elt = KRT(pathlist=[[-1],[-1,2,-1,1]]); elt 

[[-1]] (X) [[2, 1], [-1, -1]] 

sage: tp_krc = elt.to_tensor_product_of_kirillov_reshetikhin_crystals(); tp_krc 

[[[-1]], [[2], [-1]]] 

 

We can recover the original tensor product of KR tableaux:: 

 

sage: ret = KRT(tp_krc); ret 

[[-1]] (X) [[2, 1], [-1, -1]] 

sage: ret == elt 

True 

""" 

TP = self.parent().tensor_product_of_kirillov_reshetikhin_crystals() 

return TP(*[x.to_kirillov_reshetikhin_crystal() for x in self])