Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

r""" 

Finite real reflection groups 

------------------------------- 

 

Let `V` be a finite-dimensional real vector space. A reflection of 

`V` is an operator `r \in \operatorname{GL}(V)` that has order `2` 

and fixes pointwise a hyperplane in `V`. 

In the present implementation, finite real reflection groups are 

tied with a root system. 

 

Finite real reflection groups with root systems have been classified 

according to finite Cartan-Killing types. 

For more definitions and classification types of finite complex 

reflection groups, see :wikipedia:`Complex_reflection_group`. 

 

The point of entry to work with reflection groups is :func:`~sage.combinat.root_system.reflection_group_real.ReflectionGroup` 

which can be used with finite Cartan-Killing types:: 

 

sage: ReflectionGroup(['A',2]) # optional - gap3 

Irreducible real reflection group of rank 2 and type A2 

sage: ReflectionGroup(['F',4]) # optional - gap3 

Irreducible real reflection group of rank 4 and type F4 

sage: ReflectionGroup(['H',3]) # optional - gap3 

Irreducible real reflection group of rank 3 and type H3 

 

AUTHORS: 

 

- Christian Stump (initial version 2011--2015) 

 

.. WARNING:: 

 

Uses the GAP3 package *Chevie* which is available as an 

experimental package (installed by ``sage -i gap3``) or to 

download by hand from `Jean Michel's website 

<http://webusers.imj-prg.fr/~jean.michel/gap3/>`_. 

 

.. TODO:: 

 

- Implement descents, left/right descents, ``has_descent``, 

``first_descent`` directly in this class, since the generic 

implementation is much slower. 

""" 

#***************************************************************************** 

# Copyright (C) 2011-2016 Christian Stump <christian.stump at gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

 

from six.moves import range 

 

from sage.misc.cachefunc import cached_function, cached_method, cached_in_parent_method 

from sage.combinat.root_system.cartan_type import CartanType, CartanType_abstract 

from sage.rings.all import ZZ 

from sage.interfaces.gap3 import gap3 

from sage.combinat.root_system.reflection_group_complex import ComplexReflectionGroup, IrreducibleComplexReflectionGroup 

from sage.misc.sage_eval import sage_eval 

from sage.combinat.root_system.reflection_group_element import RealReflectionGroupElement 

 

def ReflectionGroup(*args,**kwds): 

r""" 

Construct a finite (complex or real) reflection group as a Sage 

permutation group by fetching the permutation representation of the 

generators from chevie's database. 

 

INPUT: 

 

can be one or multiple of the following: 

 

- a triple `(r, p, n)` with `p` divides `r`, which denotes the group 

`G(r, p, n)` 

 

- an integer between `4` and `37`, which denotes an exceptional 

irreducible complex reflection group 

 

- a finite Cartan-Killing type 

 

EXAMPLES: 

 

Finite reflection groups can be constructed from 

 

Cartan-Killing classification types:: 

 

sage: W = ReflectionGroup(['A',3]); W # optional - gap3 

Irreducible real reflection group of rank 3 and type A3 

 

sage: W = ReflectionGroup(['H',4]); W # optional - gap3 

Irreducible real reflection group of rank 4 and type H4 

 

sage: W = ReflectionGroup(['I',5]); W # optional - gap3 

Irreducible real reflection group of rank 2 and type I2(5) 

 

the complex infinite family `G(r,p,n)` with `p` divides `r`:: 

 

sage: W = ReflectionGroup((1,1,4)); W # optional - gap3 

Irreducible real reflection group of rank 3 and type A3 

 

sage: W = ReflectionGroup((2,1,3)); W # optional - gap3 

Irreducible real reflection group of rank 3 and type B3 

 

Chevalley-Shepard-Todd exceptional classification types:: 

 

sage: W = ReflectionGroup(23); W # optional - gap3 

Irreducible real reflection group of rank 3 and type H3 

 

Cartan types and matrices:: 

 

sage: ReflectionGroup(CartanType(['A',2])) # optional - gap3 

Irreducible real reflection group of rank 2 and type A2 

 

sage: ReflectionGroup(CartanType((['A',2],['A',2]))) # optional - gap3 

Reducible real reflection group of rank 4 and type A2 x A2 

 

sage: C = CartanMatrix(['A',2]) # optional - gap3 

sage: ReflectionGroup(C) # optional - gap3 

Irreducible real reflection group of rank 2 and type A2 

 

multiples of the above:: 

 

sage: W = ReflectionGroup(['A',2],['B',2]); W # optional - gap3 

Reducible real reflection group of rank 4 and type A2 x B2 

 

sage: W = ReflectionGroup(['A',2],4); W # optional - gap3 

Reducible complex reflection group of rank 4 and type A2 x ST4 

 

sage: W = ReflectionGroup((4,2,2),4); W # optional - gap3 

Reducible complex reflection group of rank 4 and type G(4,2,2) x ST4 

""" 

if not is_chevie_available(): 

raise ImportError("the GAP3 package 'chevie' is needed to work with (complex) reflection groups") 

gap3.load_package("chevie") 

 

error_msg = "the input data (%s) is not valid for reflection groups" 

 

W_types = [] 

is_complex = False 

for arg in args: 

# preparsing 

if isinstance(arg, list): 

X = tuple(arg) 

else: 

X = arg 

 

# precheck for valid input data 

if not (isinstance(X, (CartanType_abstract,tuple)) or (X in ZZ and 4 <= X <= 37)): 

raise ValueError(error_msg%X) 

 

# transforming two reducible types and an irreducible type 

if isinstance(X, CartanType_abstract): 

if not X.is_finite(): 

raise ValueError(error_msg%X) 

if hasattr(X,"cartan_type"): 

X = X.cartan_type() 

if X.is_irreducible(): 

W_types.extend([(X.letter, X.n)]) 

else: 

W_types.extend([(x.letter, x.n) for x in X.component_types()]) 

 

elif X == (2,2,2) or X == ('I',2): 

W_types.extend([('A',1), ('A',1)]) 

 

elif X == (2,2,3): 

W_types.extend([('A', 3)]) 

 

else: 

W_types.append(X) 

 

# converting the real types given as complex types 

# and then checking for real vs complex 

for i,W_type in enumerate(W_types): 

if W_type in ZZ: 

if W_type == 23: 

W_types[i] = ('H', 3) 

elif W_type == 28: 

W_types[i] = ('F', 4) 

elif W_type == 30: 

W_types[i] = ('H', 4) 

elif W_type == 35: 

W_types[i] = ('E', 6) 

elif W_type == 36: 

W_types[i] = ('E', 7) 

elif W_type == 37: 

W_types[i] = ('E', 8) 

if isinstance(W_type,tuple) and len(W_type) == 3: 

if W_type[0] == W_type[1] == 1: 

W_types[i] = ('A', W_type[2]-1) 

elif W_type[0] == 2 and W_type[1] == 1: 

W_types[i] = ('B', W_type[2]) 

elif W_type[0] == W_type[1] == 2: 

W_types[i] = ('D', W_type[2]) 

elif W_type[0] == W_type[1] and W_type[2] == 2: 

W_types[i] = ('I', W_type[0]) 

 

W_type = W_types[i] 

# check for real vs complex 

if W_type in ZZ or (isinstance(W_type, tuple) and len(W_type) == 3): 

is_complex = True 

 

for index_set_kwd in ['index_set', 'hyperplane_index_set', 'reflection_index_set']: 

index_set = kwds.get(index_set_kwd, None) 

if index_set is not None: 

if isinstance(index_set, (list, tuple)): 

kwds[index_set_kwd] = tuple(index_set) 

else: 

raise ValueError('the keyword %s must be a list or tuple'%index_set_kwd) 

 

if len(W_types) == 1: 

if is_complex is True: 

cls = IrreducibleComplexReflectionGroup 

else: 

cls = IrreducibleRealReflectionGroup 

else: 

if is_complex is True: 

cls = ComplexReflectionGroup 

else: 

cls = RealReflectionGroup 

return cls(tuple(W_types), 

index_set=kwds.get('index_set', None), 

hyperplane_index_set=kwds.get('hyperplane_index_set', None), 

reflection_index_set=kwds.get('reflection_index_set', None)) 

 

@cached_function 

def is_chevie_available(): 

r""" 

Test whether the GAP3 Chevie package is available. 

 

EXAMPLES:: 

 

sage: from sage.combinat.root_system.reflection_group_real import is_chevie_available 

sage: is_chevie_available() # random 

False 

sage: is_chevie_available() in [True, False] 

True 

""" 

try: 

from sage.interfaces.gap3 import gap3 

gap3._start() 

gap3.load_package("chevie") 

return True 

except Exception: 

return False 

 

##################################################################### 

## Classes 

 

class RealReflectionGroup(ComplexReflectionGroup): 

""" 

A real reflection group given as a permutation group. 

 

.. SEEALSO:: 

 

:func:`ReflectionGroup` 

""" 

def __init__(self, W_types, index_set=None, hyperplane_index_set=None, reflection_index_set=None): 

r""" 

Initialize ``self``. 

 

TESTS:: 

 

sage: W = ReflectionGroup(['A',3]) # optional - gap3 

sage: TestSuite(W).run() # optional - gap3 

""" 

W_types = tuple([tuple(W_type) if isinstance(W_type, (list,tuple)) else W_type 

for W_type in W_types]) 

cartan_types = [] 

for W_type in W_types: 

W_type = CartanType(W_type) 

if not W_type.is_finite() or not W_type.is_irreducible(): 

raise ValueError("the given Cartan type of a component is not irreducible and finite") 

cartan_types.append( W_type ) 

if len(W_types) == 1: 

cls = IrreducibleComplexReflectionGroup 

else: 

cls = ComplexReflectionGroup 

cls.__init__(self, W_types, index_set = index_set, 

hyperplane_index_set = hyperplane_index_set, 

reflection_index_set = reflection_index_set) 

 

def _repr_(self): 

r""" 

Return the string representation of ``self``. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(['A',3],['B',2],['I',5],['I',6]) # optional - gap3 

sage: W._repr_() # optional - gap3 

'Reducible real reflection group of rank 9 and type A3 x B2 x I2(5) x G2' 

""" 

type_str = '' 

for W_type in self._type: 

type_str += self._irrcomp_repr_(W_type) 

type_str += ' x ' 

type_str = type_str[:-3] 

return 'Reducible real reflection group of rank %s and type %s'%(self._rank,type_str) 

 

def iteration(self, algorithm="breadth", tracking_words=True): 

r""" 

Return an iterator going through all elements in ``self``. 

 

INPUT: 

 

- ``algorithm`` (default: ``'breadth'``) -- must be one of 

the following: 

 

* ``'breadth'`` - iterate over in a linear extension of the 

weak order 

* ``'depth'`` - iterate by a depth-first-search 

 

- ``tracking_words`` (default: ``True``) -- whether or not to keep 

track of the reduced words and store them in ``_reduced_word`` 

 

.. NOTE:: 

 

The fastest iteration is the depth first algorithm without 

tracking words. In particular, ``'depth'`` is ~1.5x faster. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(["B",2]) # optional - gap3 

 

sage: for w in W.iteration("breadth",True): # optional - gap3 

....: print("%s %s"%(w, w._reduced_word)) # optional - gap3 

() [] 

(1,3)(2,6)(5,7) [1] 

(1,5)(2,4)(6,8) [0] 

(1,7,5,3)(2,4,6,8) [0, 1] 

(1,3,5,7)(2,8,6,4) [1, 0] 

(2,8)(3,7)(4,6) [1, 0, 1] 

(1,7)(3,5)(4,8) [0, 1, 0] 

(1,5)(2,6)(3,7)(4,8) [0, 1, 0, 1] 

 

sage: for w in W.iteration("depth", False): w # optional - gap3 

() 

(1,3)(2,6)(5,7) 

(1,5)(2,4)(6,8) 

(1,3,5,7)(2,8,6,4) 

(1,7)(3,5)(4,8) 

(1,7,5,3)(2,4,6,8) 

(2,8)(3,7)(4,6) 

(1,5)(2,6)(3,7)(4,8) 

""" 

from sage.combinat.root_system.reflection_group_c import Iterator 

return iter(Iterator(self, N=self.number_of_reflections(), 

algorithm=algorithm, tracking_words=tracking_words)) 

 

def __iter__(self): 

r""" 

Return an iterator going through all elements in ``self``. 

 

For options and faster iteration see :meth:`iteration`. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(["B",2]) # optional - gap3 

 

sage: for w in W: print("%s %s"%(w, w._reduced_word)) # optional - gap3 

() [] 

(1,3)(2,6)(5,7) [1] 

(1,5)(2,4)(6,8) [0] 

(1,7,5,3)(2,4,6,8) [0, 1] 

(1,3,5,7)(2,8,6,4) [1, 0] 

(2,8)(3,7)(4,6) [1, 0, 1] 

(1,7)(3,5)(4,8) [0, 1, 0] 

(1,5)(2,6)(3,7)(4,8) [0, 1, 0, 1] 

""" 

return self.iteration(algorithm="breadth", tracking_words=True) 

 

@cached_method 

def bipartite_index_set(self): 

r""" 

Return the bipartite index set of a real reflection group. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(["A",5]) # optional - gap3 

sage: W.bipartite_index_set() # optional - gap3 

[[1, 3, 5], [2, 4]] 

 

sage: W = ReflectionGroup(["A",5],index_set=['a','b','c','d','e']) # optional - gap3 

sage: W.bipartite_index_set() # optional - gap3 

[['a', 'c', 'e'], ['b', 'd']] 

""" 

L, R = self._gap_group.BipartiteDecomposition().sage() 

inv = self._index_set_inverse 

L = [i for i in self._index_set if inv[i] + 1 in L] 

R = [i for i in self._index_set if inv[i] + 1 in R] 

return [L, R] 

 

def cartan_type(self): 

r""" 

Return the Cartan type of ``self``. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(['A',3]) # optional - gap3 

sage: W.cartan_type() # optional - gap3 

['A', 3] 

 

sage: W = ReflectionGroup(['A',3], ['B',2]) # optional - gap3 

sage: W.cartan_type() # optional - gap3 

A3xB2 

""" 

if len(self._type) == 1: 

ct = self._type[0] 

return CartanType([ct['series'], ct['rank']]) 

else: 

return CartanType([W.cartan_type() for W in self.irreducible_components()]) 

 

def positive_roots(self): 

r""" 

Return the positive roots of ``self``. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(['A',3], ['B',2]) # optional - gap3 

sage: W.positive_roots() # optional - gap3 

[(1, 0, 0, 0, 0), 

(0, 1, 0, 0, 0), 

(0, 0, 1, 0, 0), 

(0, 0, 0, 1, 0), 

(0, 0, 0, 0, 1), 

(1, 1, 0, 0, 0), 

(0, 1, 1, 0, 0), 

(0, 0, 0, 1, 1), 

(1, 1, 1, 0, 0), 

(0, 0, 0, 2, 1)] 

 

sage: W = ReflectionGroup(['A',3]) # optional - gap3 

sage: W.positive_roots() # optional - gap3 

[(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 1, 1)] 

""" 

return self.roots()[:self.number_of_reflections()] 

 

def almost_positive_roots(self): 

r""" 

Return the almost positive roots of ``self``. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(['A',3], ['B',2]) # optional - gap3 

sage: W.almost_positive_roots() # optional - gap3 

[(-1, 0, 0, 0, 0), 

(0, -1, 0, 0, 0), 

(0, 0, -1, 0, 0), 

(0, 0, 0, -1, 0), 

(0, 0, 0, 0, -1), 

(1, 0, 0, 0, 0), 

(0, 1, 0, 0, 0), 

(0, 0, 1, 0, 0), 

(0, 0, 0, 1, 0), 

(0, 0, 0, 0, 1), 

(1, 1, 0, 0, 0), 

(0, 1, 1, 0, 0), 

(0, 0, 0, 1, 1), 

(1, 1, 1, 0, 0), 

(0, 0, 0, 2, 1)] 

 

sage: W = ReflectionGroup(['A',3]) # optional - gap3 

sage: W.almost_positive_roots() # optional - gap3 

[(-1, 0, 0), 

(0, -1, 0), 

(0, 0, -1), 

(1, 0, 0), 

(0, 1, 0), 

(0, 0, 1), 

(1, 1, 0), 

(0, 1, 1), 

(1, 1, 1)] 

""" 

return [-beta for beta in self.simple_roots()] + self.positive_roots() 

 

def root_to_reflection(self, root): 

r""" 

Return the reflection along the given ``root``. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(['A',2]) # optional - gap3 

sage: for beta in W.roots(): W.root_to_reflection(beta) # optional - gap3 

(1,4)(2,3)(5,6) 

(1,3)(2,5)(4,6) 

(1,5)(2,4)(3,6) 

(1,4)(2,3)(5,6) 

(1,3)(2,5)(4,6) 

(1,5)(2,4)(3,6) 

""" 

Phi = self.roots() 

R = self.reflections() 

i = Phi.index(root) + 1 

j = Phi.index(-root) + 1 

for r in R: 

if r(i) == j: 

return r 

raise AssertionError("there is a bug in root_to_reflection") 

 

def reflection_to_positive_root(self, r): 

r""" 

Return the positive root orthogonal to the given reflection. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(['A',2]) # optional - gap3 

sage: for r in W.reflections(): print(W.reflection_to_positive_root(r)) # optional - gap3 

(1, 0) 

(0, 1) 

(1, 1) 

""" 

Phi = self.roots() 

N = len(Phi) / 2 

for i in range(1, N+1): 

if r(i) == i + N: 

return Phi[i-1] 

raise AssertionError("there is a bug in reflection_to_positive_root") 

 

@cached_method 

def fundamental_weights(self): 

r""" 

Return the fundamental weights of ``self`` in terms of the simple roots. 

 

The fundamental weights are defined by 

`s_j(\omega_i) = \omega_i - \delta_{i=j}\alpha_j` 

for the simple reflection `s_j` with corresponding simple 

roots `\alpha_j`. 

 

In other words, the transpose Cartan matrix sends the weight 

basis to the root basis. Observe again that the action here is 

defined as a right action, see the example below. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(['A',3], ['B',2]) # optional - gap3 

sage: W.fundamental_weights() # optional - gap3 

Finite family {1: (3/4, 1/2, 1/4, 0, 0), 2: (1/2, 1, 1/2, 0, 0), 3: (1/4, 1/2, 3/4, 0, 0), 4: (0, 0, 0, 1, 1/2), 5: (0, 0, 0, 1, 1)} 

 

sage: W = ReflectionGroup(['A',3]) # optional - gap3 

sage: W.fundamental_weights() # optional - gap3 

Finite family {1: (3/4, 1/2, 1/4), 2: (1/2, 1, 1/2), 3: (1/4, 1/2, 3/4)} 

 

sage: W = ReflectionGroup(['A',3]) # optional - gap3 

sage: S = W.simple_reflections() # optional - gap3 

sage: N = W.fundamental_weights() # optional - gap3 

sage: for i in W.index_set(): # optional - gap3 

....: for j in W.index_set(): # optional - gap3 

....: print("{} {} {} {}".format(i, j, N[i], N[i]*S[j].to_matrix())) 

1 1 (3/4, 1/2, 1/4) (-1/4, 1/2, 1/4) 

1 2 (3/4, 1/2, 1/4) (3/4, 1/2, 1/4) 

1 3 (3/4, 1/2, 1/4) (3/4, 1/2, 1/4) 

2 1 (1/2, 1, 1/2) (1/2, 1, 1/2) 

2 2 (1/2, 1, 1/2) (1/2, 0, 1/2) 

2 3 (1/2, 1, 1/2) (1/2, 1, 1/2) 

3 1 (1/4, 1/2, 3/4) (1/4, 1/2, 3/4) 

3 2 (1/4, 1/2, 3/4) (1/4, 1/2, 3/4) 

3 3 (1/4, 1/2, 3/4) (1/4, 1/2, -1/4) 

""" 

from sage.sets.family import Family 

m = self.cartan_matrix().transpose().inverse() 

Delta = tuple(self.simple_roots()) 

zero = Delta[0].parent().zero() 

weights = [sum([m[i,j] * sj for j,sj in enumerate(Delta)], zero) 

for i in range(len(Delta))] 

for weight in weights: 

weight.set_immutable() 

return Family({ind:weights[i] for i,ind in enumerate(self._index_set)}) 

 

def fundamental_weight(self, i): 

r""" 

Return the fundamental weight with index ``i``. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(['A',3]) # optional - gap3 

sage: [ W.fundamental_weight(i) for i in W.index_set() ] # optional - gap3 

[(3/4, 1/2, 1/4), (1/2, 1, 1/2), (1/4, 1/2, 3/4)] 

""" 

return self.fundamental_weights()[i] 

 

@cached_method 

def coxeter_matrix(self): 

""" 

Return the Coxeter matrix associated to ``self``. 

 

EXAMPLES:: 

 

sage: G = ReflectionGroup(['A',3]) # optional - gap3 

sage: G.coxeter_matrix() # optional - gap3 

[1 3 2] 

[3 1 3] 

[2 3 1] 

""" 

return self.cartan_type().coxeter_matrix() 

 

@cached_method 

def right_coset_representatives(self, J): 

r""" 

Return the right coset representatives of ``self`` for the 

parabolic subgroup generated by the simple reflections in ``J``. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(["A",3]) # optional - gap3 

sage: for J in Subsets([1,2,3]): W.right_coset_representatives(J) # optional - gap3 

[(), (2,5)(3,9)(4,6)(8,11)(10,12), (1,4)(2,8)(3,5)(7,10)(9,11), 

(1,7)(2,4)(5,6)(8,10)(11,12), (1,2,10)(3,6,5)(4,7,8)(9,12,11), 

(1,4,6)(2,3,11)(5,8,9)(7,10,12), (1,6,4)(2,11,3)(5,9,8)(7,12,10), 

(1,7)(2,6)(3,9)(4,5)(8,12)(10,11), 

(1,10,2)(3,5,6)(4,8,7)(9,11,12), (1,2,3,12)(4,5,10,11)(6,7,8,9), 

(1,5,9,10)(2,12,8,6)(3,4,7,11), (1,6)(2,9)(3,8)(5,11)(7,12), 

(1,8)(2,7)(3,6)(4,10)(9,12), (1,10,9,5)(2,6,8,12)(3,11,7,4), 

(1,12,3,2)(4,11,10,5)(6,9,8,7), (1,3)(2,12)(4,10)(5,11)(6,8)(7,9), 

(1,5,12)(2,9,4)(3,10,8)(6,7,11), (1,8,11)(2,5,7)(3,12,4)(6,10,9), 

(1,11,8)(2,7,5)(3,4,12)(6,9,10), (1,12,5)(2,4,9)(3,8,10)(6,11,7), 

(1,3,7,9)(2,11,6,10)(4,8,5,12), (1,9,7,3)(2,10,6,11)(4,12,5,8), 

(1,11)(3,10)(4,9)(5,7)(6,12), (1,9)(2,8)(3,7)(4,11)(5,10)(6,12)] 

[(), (2,5)(3,9)(4,6)(8,11)(10,12), (1,4)(2,8)(3,5)(7,10)(9,11), 

(1,2,10)(3,6,5)(4,7,8)(9,12,11), (1,4,6)(2,3,11)(5,8,9)(7,10,12), 

(1,6,4)(2,11,3)(5,9,8)(7,12,10), (1,2,3,12)(4,5,10,11)(6,7,8,9), 

(1,5,9,10)(2,12,8,6)(3,4,7,11), (1,6)(2,9)(3,8)(5,11)(7,12), 

(1,3)(2,12)(4,10)(5,11)(6,8)(7,9), 

(1,5,12)(2,9,4)(3,10,8)(6,7,11), (1,3,7,9)(2,11,6,10)(4,8,5,12)] 

[(), (2,5)(3,9)(4,6)(8,11)(10,12), (1,7)(2,4)(5,6)(8,10)(11,12), 

(1,4,6)(2,3,11)(5,8,9)(7,10,12), 

(1,7)(2,6)(3,9)(4,5)(8,12)(10,11), 

(1,10,2)(3,5,6)(4,8,7)(9,11,12), (1,2,3,12)(4,5,10,11)(6,7,8,9), 

(1,10,9,5)(2,6,8,12)(3,11,7,4), (1,12,3,2)(4,11,10,5)(6,9,8,7), 

(1,8,11)(2,5,7)(3,12,4)(6,10,9), (1,12,5)(2,4,9)(3,8,10)(6,11,7), 

(1,11)(3,10)(4,9)(5,7)(6,12)] 

[(), (1,4)(2,8)(3,5)(7,10)(9,11), (1,7)(2,4)(5,6)(8,10)(11,12), 

(1,2,10)(3,6,5)(4,7,8)(9,12,11), (1,6,4)(2,11,3)(5,9,8)(7,12,10), 

(1,10,2)(3,5,6)(4,8,7)(9,11,12), (1,5,9,10)(2,12,8,6)(3,4,7,11), 

(1,8)(2,7)(3,6)(4,10)(9,12), (1,12,3,2)(4,11,10,5)(6,9,8,7), 

(1,3)(2,12)(4,10)(5,11)(6,8)(7,9), 

(1,11,8)(2,7,5)(3,4,12)(6,9,10), (1,9,7,3)(2,10,6,11)(4,12,5,8)] 

[(), (2,5)(3,9)(4,6)(8,11)(10,12), (1,4,6)(2,3,11)(5,8,9)(7,10,12), 

(1,2,3,12)(4,5,10,11)(6,7,8,9)] 

[(), (1,4)(2,8)(3,5)(7,10)(9,11), (1,2,10)(3,6,5)(4,7,8)(9,12,11), 

(1,6,4)(2,11,3)(5,9,8)(7,12,10), (1,5,9,10)(2,12,8,6)(3,4,7,11), 

(1,3)(2,12)(4,10)(5,11)(6,8)(7,9)] 

[(), (1,7)(2,4)(5,6)(8,10)(11,12), (1,10,2)(3,5,6)(4,8,7)(9,11,12), 

(1,12,3,2)(4,11,10,5)(6,9,8,7)] 

[()] 

""" 

from sage.combinat.root_system.reflection_group_element import _gap_return 

J_inv = [self._index_set_inverse[j] + 1 for j in J] 

S = str(gap3('ReducedRightCosetRepresentatives(%s,ReflectionSubgroup(%s,%s))' % (self._gap_group._name, self._gap_group._name, J_inv))) 

return sage_eval(_gap_return(S), locals={'self': self}) 

 

def simple_root_index(self, i): 

r""" 

Return the index of the simple root `\alpha_i`. 

 

This is the position of `\alpha_i` in the list of simple roots. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(['A',3]) # optional - gap3 

sage: [W.simple_root_index(i) for i in W.index_set()] # optional - gap3 

[0, 1, 2] 

""" 

return self._index_set_inverse[i] 

 

class Element(RealReflectionGroupElement, ComplexReflectionGroup.Element): 

 

@cached_in_parent_method 

def right_coset_representatives(self): 

r""" 

Return the right coset representatives of ``self``. 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(['A',2]) # optional - gap3 

sage: for w in W: # optional - gap3 

....: rcr = w.right_coset_representatives() # optional - gap3 

....: print("%s %s"%(w.reduced_word(), # optional - gap3 

....: [v.reduced_word() for v in rcr])) # optional - gap3 

[] [[], [2], [1], [2, 1], [1, 2], [1, 2, 1]] 

[2] [[], [2], [1]] 

[1] [[], [1], [1, 2]] 

[1, 2] [[]] 

[2, 1] [[]] 

[1, 2, 1] [[], [2], [2, 1]] 

""" 

W = self.parent() 

T = W.reflections() 

T_fix = [i + 1 for i in T.keys() 

if self.fix_space().is_subspace(T[i].fix_space())] 

S = str(gap3('ReducedRightCosetRepresentatives(%s,ReflectionSubgroup(%s,%s))' % (W._gap_group._name, W._gap_group._name, T_fix))) 

from sage.combinat.root_system.reflection_group_element import _gap_return 

return sage_eval(_gap_return(S, coerce_obj='W'), 

locals={'self': self, 'W': W}) 

 

def left_coset_representatives(self): 

r""" 

Return the left coset representatives of ``self``. 

 

.. SEEALSO:: :meth:`right_coset_representatives` 

 

EXAMPLES:: 

 

sage: W = ReflectionGroup(['A',2]) # optional - gap3 

sage: for w in W: # optional - gap3 

....: lcr = w.left_coset_representatives() # optional - gap3 

....: print("%s %s"%(w.reduced_word(), # optional - gap3 

....: [v.reduced_word() for v in lcr])) # optional - gap3 

[] [[], [2], [1], [1, 2], [2, 1], [1, 2, 1]] 

[2] [[], [2], [1]] 

[1] [[], [1], [2, 1]] 

[1, 2] [[]] 

[2, 1] [[]] 

[1, 2, 1] [[], [2], [1, 2]] 

""" 

return [ (~w) for w in self.right_coset_representatives() ] 

 

class IrreducibleRealReflectionGroup(RealReflectionGroup, IrreducibleComplexReflectionGroup): 

def _repr_(self): 

r""" 

Return the string representation of ``self``. 

 

EXAMPLES:: 

 

sage: for i in [2..7]: ReflectionGroup(["I", i]) # optional - gap3 

Reducible real reflection group of rank 2 and type A1 x A1 

Irreducible real reflection group of rank 2 and type A2 

Irreducible real reflection group of rank 2 and type C2 

Irreducible real reflection group of rank 2 and type I2(5) 

Irreducible real reflection group of rank 2 and type G2 

Irreducible real reflection group of rank 2 and type I2(7) 

""" 

type_str = self._irrcomp_repr_(self._type[0]) 

return 'Irreducible real reflection group of rank %s and type %s'%(self._rank,type_str) 

 

class Element(RealReflectionGroup.Element, IrreducibleComplexReflectionGroup.Element): 

pass