Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

r""" 

Root systems 

============ 

 

See :ref:`sage.combinat.root_system` for an overview. 

""" 

from __future__ import absolute_import 

#***************************************************************************** 

# Copyright (C) 2007 Mike Hansen <mhansen@gmail.com>, 

# Justin Walker <justin at mac.com> 

# 2008-2009 Nicolas M. Thiery <nthiery at users.sf.net> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

# Design largely inspired from MuPAD-Combinat 

from sage.structure.sage_object import SageObject 

from sage.structure.unique_representation import UniqueRepresentation 

from .cartan_type import CartanType 

from sage.rings.all import ZZ, QQ 

from sage.misc.all import cached_method 

from .root_space import RootSpace 

from .weight_space import WeightSpace 

 

 

class RootSystem(UniqueRepresentation, SageObject): 

r""" 

A class for root systems. 

 

EXAMPLES: 

 

We construct the root system for type `B_3`:: 

 

sage: R=RootSystem(['B',3]); R 

Root system of type ['B', 3] 

 

``R`` models the root system abstractly. It comes equipped with various 

realizations of the root and weight lattices, where all computations 

take place. Let us play first with the root lattice:: 

 

sage: space = R.root_lattice() 

sage: space 

Root lattice of the Root system of type ['B', 3] 

 

This is the free `\ZZ`-module `\bigoplus_i \ZZ.\alpha_i` spanned 

by the simple roots:: 

 

sage: space.base_ring() 

Integer Ring 

sage: list(space.basis()) 

[alpha[1], alpha[2], alpha[3]] 

 

Let us do some computations with the simple roots:: 

 

sage: alpha = space.simple_roots() 

sage: alpha[1] + alpha[2] 

alpha[1] + alpha[2] 

 

There is a canonical pairing between the root lattice and the 

coroot lattice:: 

 

sage: R.coroot_lattice() 

Coroot lattice of the Root system of type ['B', 3] 

 

We construct the simple coroots, and do some computations (see 

comments about duality below for some caveat):: 

 

sage: alphacheck = space.simple_coroots() 

sage: list(alphacheck) 

[alphacheck[1], alphacheck[2], alphacheck[3]] 

 

We can carry over the same computations in any of the other 

realizations of the root lattice, like the root space 

`\bigoplus_i \QQ.\alpha_i`, the weight lattice 

`\bigoplus_i \ZZ.\Lambda_i`, the weight 

space `\bigoplus_i \QQ.\Lambda_i`. For example:: 

 

sage: space = R.weight_space() 

sage: space 

Weight space over the Rational Field of the Root system of type ['B', 3] 

 

:: 

 

sage: space.base_ring() 

Rational Field 

sage: list(space.basis()) 

[Lambda[1], Lambda[2], Lambda[3]] 

 

:: 

 

sage: alpha = space.simple_roots() 

sage: alpha[1] + alpha[2] 

Lambda[1] + Lambda[2] - 2*Lambda[3] 

 

The fundamental weights are the dual basis of the coroots:: 

 

sage: Lambda = space.fundamental_weights() 

sage: Lambda[1] 

Lambda[1] 

 

:: 

 

sage: alphacheck = space.simple_coroots() 

sage: list(alphacheck) 

[alphacheck[1], alphacheck[2], alphacheck[3]] 

 

:: 

 

sage: [Lambda[i].scalar(alphacheck[1]) for i in space.index_set()] 

[1, 0, 0] 

sage: [Lambda[i].scalar(alphacheck[2]) for i in space.index_set()] 

[0, 1, 0] 

sage: [Lambda[i].scalar(alphacheck[3]) for i in space.index_set()] 

[0, 0, 1] 

 

Let us use the simple reflections. In the weight space, they 

work as in the *number game*: firing the node `i` on an 

element `x` adds `c` times the simple root 

`\alpha_i`, where `c` is the coefficient of 

`i` in `x`:: 

 

sage: s = space.simple_reflections() 

sage: Lambda[1].simple_reflection(1) 

-Lambda[1] + Lambda[2] 

sage: Lambda[2].simple_reflection(1) 

Lambda[2] 

sage: Lambda[3].simple_reflection(1) 

Lambda[3] 

sage: (-2*Lambda[1] + Lambda[2] + Lambda[3]).simple_reflection(1) 

2*Lambda[1] - Lambda[2] + Lambda[3] 

 

It can be convenient to manipulate the simple reflections 

themselves:: 

 

sage: s = space.simple_reflections() 

sage: s[1](Lambda[1]) 

-Lambda[1] + Lambda[2] 

sage: s[1](Lambda[2]) 

Lambda[2] 

sage: s[1](Lambda[3]) 

Lambda[3] 

 

.. RUBRIC:: Ambient spaces 

 

The root system may also come equipped with an ambient space. 

This is a `\QQ`-module, endowed with its canonical Euclidean 

scalar product, which admits simultaneous embeddings of the 

(extended) weight and the (extended) coweight lattice, and 

therefore the root and the coroot lattice. This is implemented on 

a type by type basis for the finite crystallographic root systems 

following Bourbaki's conventions and is extended to the affine 

cases. Coefficients permitting, this is also available as an 

ambient lattice. 

 

.. SEEALSO:: :meth:`ambient_space` and :meth:`ambient_lattice` for details 

 

In finite type `A`, we recover the natural representation of the 

symmetric group as group of permutation matrices:: 

 

sage: RootSystem(["A",2]).ambient_space().weyl_group().simple_reflections() 

Finite family {1: [0 1 0] 

[1 0 0] 

[0 0 1], 

2: [1 0 0] 

[0 0 1] 

[0 1 0]} 

 

In type `B`, `C`, and `D`, we recover the natural representation 

of the Weyl group as groups of signed permutation matrices:: 

 

sage: RootSystem(["B",3]).ambient_space().weyl_group().simple_reflections() 

Finite family {1: [0 1 0] 

[1 0 0] 

[0 0 1], 

2: [1 0 0] 

[0 0 1] 

[0 1 0], 

3: [ 1 0 0] 

[ 0 1 0] 

[ 0 0 -1]} 

 

In (untwisted) affine types `A`, ..., `D`, one can recover from 

the ambient space the affine permutation representation, in window 

notation. Let us consider the ambient space for affine type `A`:: 

 

sage: L = RootSystem(["A",2,1]).ambient_space(); L 

Ambient space of the Root system of type ['A', 2, 1] 

 

Define the "identity" by an appropriate vector at level `-3`:: 

 

sage: e = L.basis(); Lambda = L.fundamental_weights() 

sage: id = e[0] + 2*e[1] + 3*e[2] - 3*Lambda[0] 

 

The corresponding permutation is obtained by projecting it onto 

the classical ambient space:: 

 

sage: L.classical() 

Ambient space of the Root system of type ['A', 2] 

sage: L.classical()(id) 

(1, 2, 3) 

 

Here is the orbit of the identity under the action of the finite 

group:: 

 

sage: W = L.weyl_group() 

sage: S3 = [ w.action(id) for w in W.classical() ] 

sage: [L.classical()(x) for x in S3] 

[(1, 2, 3), (3, 2, 1), (3, 1, 2), (2, 1, 3), (2, 3, 1), (1, 3, 2)] 

 

And the action of `s_0` on these yields:: 

 

sage: s = W.simple_reflections() 

sage: [L.classical()(s[0].action(x)) for x in S3] 

[(0, 2, 4), (-2, 2, 6), (-1, 1, 6), (0, 1, 5), (-2, 3, 5), (-1, 3, 4)] 

 

We can also plot various components of the ambient spaces:: 

 

sage: L = RootSystem(['A',2]).ambient_space() 

sage: L.plot() 

Graphics object consisting of 13 graphics primitives 

 

For more on plotting, see :ref:`sage.combinat.root_system.plot`. 

 

.. RUBRIC:: Dual root systems 

 

The root system is aware of its dual root system:: 

 

sage: R.dual 

Dual of root system of type ['B', 3] 

 

``R.dual`` is really the root system of type `C_3`:: 

 

sage: R.dual.cartan_type() 

['C', 3] 

 

And the coroot lattice that we have been manipulating before is 

really implemented as the root lattice of the dual root system:: 

 

sage: R.dual.root_lattice() 

Coroot lattice of the Root system of type ['B', 3] 

 

In particular, the coroots for the root lattice are in fact the 

roots of the coroot lattice:: 

 

sage: list(R.root_lattice().simple_coroots()) 

[alphacheck[1], alphacheck[2], alphacheck[3]] 

sage: list(R.coroot_lattice().simple_roots()) 

[alphacheck[1], alphacheck[2], alphacheck[3]] 

sage: list(R.dual.root_lattice().simple_roots()) 

[alphacheck[1], alphacheck[2], alphacheck[3]] 

 

The coweight lattice and space are defined similarly. Note that, to 

limit confusion, all the output have been tweaked appropriately. 

 

.. SEEALSO:: 

 

- :mod:`sage.combinat.root_system` 

- :class:`RootSpace` 

- :class:`WeightSpace` 

- :class:`AmbientSpace` 

- :class:`~sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations` 

- :class:`~sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations` 

 

TESTS:: 

 

sage: R = RootSystem(['C',3]) 

sage: TestSuite(R).run() 

sage: L = R.ambient_space() 

sage: s = L.simple_reflections() # this used to break the testsuite below due to caching an unpicklable method 

sage: s = L.simple_projections() # todo: not implemented 

sage: TestSuite(L).run() 

sage: L = R.root_space() 

sage: s = L.simple_reflections() 

sage: TestSuite(L).run() 

 

:: 

 

sage: for T in CartanType.samples(crystallographic=True): # long time (13s on sage.math, 2012) 

....: TestSuite(RootSystem(T)).run() 

 

Some checks for equality:: 

 

sage: r1 = RootSystem(['A',3]) 

sage: r2 = RootSystem(['B',3]) 

sage: r1 == r1 

True 

sage: r1 == r2 

False 

sage: r1 != r1 

False 

 

Check that root systems inherit a hash method from ``UniqueRepresentation``:: 

 

sage: hash(r1) # random 

42 

""" 

 

@staticmethod 

def __classcall__(cls, cartan_type, as_dual_of=None): 

""" 

Straighten arguments to enable unique representation 

 

.. SEEALSO:: :class:`UniqueRepresentation` 

 

TESTS:: 

 

sage: RootSystem(["A",3]) is RootSystem(CartanType(["A",3])) 

True 

sage: RootSystem(["B",3], as_dual_of=None) is RootSystem("B3") 

True 

""" 

return super(RootSystem, cls).__classcall__(cls, CartanType(cartan_type), as_dual_of) 

 

def __init__(self, cartan_type, as_dual_of=None): 

""" 

TESTS:: 

 

sage: R = RootSystem(['A',3]) 

sage: R 

Root system of type ['A', 3] 

""" 

self._cartan_type = CartanType(cartan_type) 

 

# Duality 

# The root system can be defined as dual of another root system. This will 

# only affects the pretty printing 

if as_dual_of is None: 

self.dual_side = False 

# still fails for CartanType G2xA1 

try: 

self.dual = RootSystem(self._cartan_type.dual(), as_dual_of=self); 

except Exception: 

pass 

else: 

self.dual_side = True 

self.dual = as_dual_of 

 

 

def _test_root_lattice_realizations(self, **options): 

""" 

Runs tests on all the root lattice realizations of this root 

system. 

 

EXAMPLES:: 

 

sage: RootSystem(["A",3])._test_root_lattice_realizations() 

 

.. SEEALSO:: :class:`TestSuite`. 

""" 

tester = self._tester(**options) 

options.pop('tester', None) 

from sage.misc.sage_unittest import TestSuite 

TestSuite(self.root_lattice()).run(**options) 

TestSuite(self.root_space()).run(**options) 

TestSuite(self.weight_lattice()).run(**options) 

TestSuite(self.weight_space()).run(**options) 

if self.cartan_type().is_affine(): 

TestSuite(self.weight_lattice(extended=True)).run(**options) 

TestSuite(self.weight_space(extended=True)).run(**options) 

if self.ambient_lattice() is not None: 

TestSuite(self.ambient_lattice()).run(**options) 

if self.ambient_space() is not None: 

TestSuite(self.ambient_space()).run(**options) 

 

def _repr_(self): 

""" 

EXAMPLES:: 

 

sage: RootSystem(['A',3]) # indirect doctest 

Root system of type ['A', 3] 

sage: RootSystem(['B',3]).dual # indirect doctest 

Dual of root system of type ['B', 3] 

""" 

if self.dual_side: 

return "Dual of root system of type %s"%self.dual.cartan_type() 

else: 

return "Root system of type %s"%self.cartan_type() 

 

def cartan_type(self): 

""" 

Returns the Cartan type of the root system. 

 

EXAMPLES:: 

 

sage: R = RootSystem(['A',3]) 

sage: R.cartan_type() 

['A', 3] 

""" 

return self._cartan_type 

 

@cached_method 

def dynkin_diagram(self): 

""" 

Returns the Dynkin diagram of the root system. 

 

EXAMPLES:: 

 

sage: R = RootSystem(['A',3]) 

sage: R.dynkin_diagram() 

O---O---O 

1 2 3 

A3 

""" 

return self.cartan_type().dynkin_diagram() 

 

@cached_method 

def cartan_matrix(self): 

""" 

EXAMPLES:: 

 

sage: RootSystem(['A',3]).cartan_matrix() 

[ 2 -1 0] 

[-1 2 -1] 

[ 0 -1 2] 

""" 

return self.cartan_type().cartan_matrix() 

 

@cached_method 

def index_set(self): 

""" 

EXAMPLES:: 

 

sage: RootSystem(['A',3]).index_set() 

(1, 2, 3) 

""" 

return self.cartan_type().index_set() 

 

@cached_method 

def is_finite(self): 

""" 

Returns True if self is a finite root system. 

 

EXAMPLES:: 

 

sage: RootSystem(["A",3]).is_finite() 

True 

sage: RootSystem(["A",3,1]).is_finite() 

False 

""" 

return self.cartan_type().is_finite() 

 

@cached_method 

def is_irreducible(self): 

""" 

Returns True if self is an irreducible root system. 

 

EXAMPLES:: 

 

sage: RootSystem(['A', 3]).is_irreducible() 

True 

sage: RootSystem("A2xB2").is_irreducible() 

False 

""" 

return self.cartan_type().is_irreducible() 

 

def root_lattice(self): 

""" 

Returns the root lattice associated to self. 

 

EXAMPLES:: 

 

sage: RootSystem(['A',3]).root_lattice() 

Root lattice of the Root system of type ['A', 3] 

""" 

return self.root_space(ZZ) 

 

@cached_method 

def root_space(self, base_ring=QQ): 

""" 

Returns the root space associated to self. 

 

EXAMPLES:: 

 

sage: RootSystem(['A',3]).root_space() 

Root space over the Rational Field of the Root system of type ['A', 3] 

""" 

return RootSpace(self, base_ring) 

 

def root_poset(self, restricted=False, facade=False): 

r""" 

Returns the (restricted) root poset associated to ``self``. 

 

The elements are given by the positive roots (resp. non-simple, positive roots), and 

`\alpha \leq \beta` iff `\beta - \alpha` is a non-negative linear combination of simple roots. 

 

INPUT: 

 

- ``restricted`` -- (default:False) if True, only non-simple roots are considered. 

- ``facade`` -- (default:False) passes facade option to the poset generator. 

 

EXAMPLES:: 

 

sage: Phi = RootSystem(['A',2]).root_poset(); Phi 

Finite poset containing 3 elements 

sage: sorted(Phi.cover_relations(), key=str) 

[[alpha[1], alpha[1] + alpha[2]], [alpha[2], alpha[1] + alpha[2]]] 

 

sage: Phi = RootSystem(['A',3]).root_poset(restricted=True); Phi 

Finite poset containing 3 elements 

sage: sorted(Phi.cover_relations(), key=str) 

[[alpha[1] + alpha[2], alpha[1] + alpha[2] + alpha[3]], [alpha[2] + alpha[3], alpha[1] + alpha[2] + alpha[3]]] 

 

sage: Phi = RootSystem(['B',2]).root_poset(); Phi 

Finite poset containing 4 elements 

sage: Phi.cover_relations() 

[[alpha[2], alpha[1] + alpha[2]], [alpha[1], alpha[1] + alpha[2]], [alpha[1] + alpha[2], alpha[1] + 2*alpha[2]]] 

""" 

return self.root_lattice().root_poset(restricted=restricted,facade=facade) 

 

def coroot_lattice(self): 

""" 

Returns the coroot lattice associated to self. 

 

EXAMPLES:: 

 

sage: RootSystem(['A',3]).coroot_lattice() 

Coroot lattice of the Root system of type ['A', 3] 

""" 

return self.dual.root_lattice() 

 

def coroot_space(self, base_ring=QQ): 

""" 

Returns the coroot space associated to self. 

 

EXAMPLES:: 

 

sage: RootSystem(['A',3]).coroot_space() 

Coroot space over the Rational Field of the Root system of type ['A', 3] 

""" 

return self.dual.root_space(base_ring) 

 

@cached_method 

def weight_lattice(self, extended = False): 

""" 

Returns the weight lattice associated to self. 

 

.. SEEALSO:: 

 

- :meth:`weight_space` 

- :meth:`coweight_space`, :meth:`coweight_lattice` 

- :class:`~sage.combinat.root_system.WeightSpace` 

 

EXAMPLES:: 

 

sage: RootSystem(['A',3]).weight_lattice() 

Weight lattice of the Root system of type ['A', 3] 

 

sage: RootSystem(['A',3,1]).weight_space(extended = True) 

Extended weight space over the Rational Field of the Root system of type ['A', 3, 1] 

""" 

return WeightSpace(self, ZZ, extended = extended) 

 

@cached_method 

def weight_space(self, base_ring=QQ, extended = False): 

""" 

Returns the weight space associated to self. 

 

.. SEEALSO:: 

 

- :meth:`weight_lattice` 

- :meth:`coweight_space`, :meth:`coweight_lattice` 

- :class:`~sage.combinat.root_system.WeightSpace` 

 

EXAMPLES:: 

 

sage: RootSystem(['A',3]).weight_space() 

Weight space over the Rational Field of the Root system of type ['A', 3] 

 

sage: RootSystem(['A',3,1]).weight_space(extended = True) 

Extended weight space over the Rational Field of the Root system of type ['A', 3, 1] 

""" 

return WeightSpace(self, base_ring, extended = extended) 

 

def coweight_lattice(self, extended = False): 

""" 

Returns the coweight lattice associated to self. 

 

This is the weight lattice of the dual root system. 

 

.. SEEALSO:: 

 

- :meth:`coweight_space` 

- :meth:`weight_space`, :meth:`weight_lattice` 

- :class:`~sage.combinat.root_system.WeightSpace` 

 

EXAMPLES:: 

 

sage: RootSystem(['A',3]).coweight_lattice() 

Coweight lattice of the Root system of type ['A', 3] 

 

sage: RootSystem(['A',3,1]).coweight_lattice(extended = True) 

Extended coweight lattice of the Root system of type ['A', 3, 1] 

""" 

return self.dual.weight_lattice(extended = extended) 

 

def coweight_space(self, base_ring=QQ, extended = False): 

""" 

Returns the coweight space associated to self. 

 

This is the weight space of the dual root system. 

 

.. SEEALSO:: 

 

- :meth:`coweight_lattice` 

- :meth:`weight_space`, :meth:`weight_lattice` 

- :class:`~sage.combinat.root_system.WeightSpace` 

 

EXAMPLES:: 

 

sage: RootSystem(['A',3]).coweight_space() 

Coweight space over the Rational Field of the Root system of type ['A', 3] 

 

sage: RootSystem(['A',3,1]).coweight_space(extended=True) 

Extended coweight space over the Rational Field of the Root system of type ['A', 3, 1] 

""" 

return self.dual.weight_space(base_ring, extended = extended) 

 

 

def ambient_lattice(self): 

r""" 

Return the ambient lattice for this root_system. 

 

This is the ambient space, over `\ZZ`. 

 

.. SEEALSO:: 

 

- :meth:`ambient_space` 

- :meth:`root_lattice` 

- :meth:`weight_lattice` 

 

EXAMPLES:: 

 

sage: RootSystem(['A',4]).ambient_lattice() 

Ambient lattice of the Root system of type ['A', 4] 

sage: RootSystem(['A',4,1]).ambient_lattice() 

Ambient lattice of the Root system of type ['A', 4, 1] 

 

Except in type A, only an ambient space can be realized:: 

 

sage: RootSystem(['B',4]).ambient_lattice() 

sage: RootSystem(['C',4]).ambient_lattice() 

sage: RootSystem(['D',4]).ambient_lattice() 

sage: RootSystem(['E',6]).ambient_lattice() 

sage: RootSystem(['F',4]).ambient_lattice() 

sage: RootSystem(['G',2]).ambient_lattice() 

""" 

return self.ambient_space(ZZ) 

 

@cached_method 

def ambient_space(self, base_ring=QQ): 

r""" 

Return the usual ambient space for this root_system. 

 

INPUT: 

 

- ``base_ring`` -- a base ring (default: `\QQ`) 

 

This is a ``base_ring``-module, endowed with its canonical 

Euclidean scalar product, which admits simultaneous embeddings 

into the weight and the coweight lattice, and therefore the 

root and the coroot lattice, and preserves scalar products 

between elements of the coroot lattice and elements of the 

root or weight lattice (and dually). 

 

There is no mechanical way to define the ambient space just 

from the Cartan matrix. Instead it is constructed from hard 

coded type by type data, according to the usual Bourbaki 

conventions. Such data is provided for all the finite 

(crystallographic) types. From this data, ambient spaces can be 

built as well for dual types, reducible types and affine 

types. When no data is available, or if the base ring is not 

large enough, None is returned. 

 

.. WARNING:: for affine types 

 

.. SEEALSO:: 

 

- The section on ambient spaces in :class:`RootSystem` 

- :meth:`ambient_lattice` 

- :class:`~sage.combinat.root_system.ambient_space.AmbientSpace` 

- :class:`~sage.combinat.root_system.ambient_space.type_affine.AmbientSpace` 

- :meth:`root_space` 

- :meth:`weight:space` 

 

EXAMPLES:: 

 

sage: RootSystem(['A',4]).ambient_space() 

Ambient space of the Root system of type ['A', 4] 

 

:: 

 

sage: RootSystem(['B',4]).ambient_space() 

Ambient space of the Root system of type ['B', 4] 

 

:: 

 

sage: RootSystem(['C',4]).ambient_space() 

Ambient space of the Root system of type ['C', 4] 

 

:: 

 

sage: RootSystem(['D',4]).ambient_space() 

Ambient space of the Root system of type ['D', 4] 

 

:: 

 

sage: RootSystem(['E',6]).ambient_space() 

Ambient space of the Root system of type ['E', 6] 

 

:: 

 

sage: RootSystem(['F',4]).ambient_space() 

Ambient space of the Root system of type ['F', 4] 

 

:: 

 

sage: RootSystem(['G',2]).ambient_space() 

Ambient space of the Root system of type ['G', 2] 

 

An alternative base ring can be provided as an option:: 

 

sage: e = RootSystem(['B',3]).ambient_space(RR) 

sage: TestSuite(e).run() 

 

It should contain the smallest ring over which the ambient 

space can be defined (`\ZZ` in type `A` or `\QQ` otherwise). 

Otherwise ``None`` is returned:: 

 

sage: RootSystem(['B',2]).ambient_space(ZZ) 

 

The base ring should also be totally ordered. In practice, 

only `\ZZ` and `\QQ` are really supported at this point, but 

you are welcome to experiment:: 

 

sage: e = RootSystem(['G',2]).ambient_space(RR) 

sage: TestSuite(e).run() 

Failure in _test_root_lattice_realization: 

Traceback (most recent call last): 

... 

AssertionError: 2.00000000000000 != 2.00000000000000 

------------------------------------------------------------ 

The following tests failed: _test_root_lattice_realization 

""" 

if not hasattr(self.cartan_type(),"AmbientSpace"): 

return None 

AmbientSpace = self.cartan_type().AmbientSpace 

if not base_ring.has_coerce_map_from(AmbientSpace.smallest_base_ring(self.cartan_type())): 

return None 

return AmbientSpace(self, base_ring) 

 

def coambient_space(self, base_ring=QQ): 

r""" 

Return the coambient space for this root system. 

 

This is the ambient space of the dual root system. 

 

.. SEEALSO:: 

 

- :meth:`ambient_space` 

 

EXAMPLES:: 

 

sage: L = RootSystem(["B",2]).ambient_space(); L 

Ambient space of the Root system of type ['B', 2] 

sage: coL = RootSystem(["B",2]).coambient_space(); coL 

Coambient space of the Root system of type ['B', 2] 

 

The roots and coroots are interchanged:: 

 

sage: coL.simple_roots() 

Finite family {1: (1, -1), 2: (0, 2)} 

sage: L.simple_coroots() 

Finite family {1: (1, -1), 2: (0, 2)} 

 

sage: coL.simple_coroots() 

Finite family {1: (1, -1), 2: (0, 1)} 

sage: L.simple_roots() 

Finite family {1: (1, -1), 2: (0, 1)} 

""" 

return self.dual.ambient_space(base_ring) 

 

 

def WeylDim(ct, coeffs): 

""" 

The Weyl Dimension Formula. 

 

INPUT: 

 

 

- ``type`` - a Cartan type 

 

- ``coeffs`` - a list of nonnegative integers 

 

 

The length of the list must equal the rank type[1]. A dominant 

weight hwv is constructed by summing the fundamental weights with 

coefficients from this list. The dimension of the irreducible 

representation of the semisimple complex Lie algebra with highest 

weight vector hwv is returned. 

 

EXAMPLES: 

 

For `SO(7)`, the Cartan type is `B_3`, so:: 

 

sage: WeylDim(['B',3],[1,0,0]) # standard representation of SO(7) 

7 

sage: WeylDim(['B',3],[0,1,0]) # exterior square 

21 

sage: WeylDim(['B',3],[0,0,1]) # spin representation of spin(7) 

8 

sage: WeylDim(['B',3],[1,0,1]) # sum of the first and third fundamental weights 

48 

sage: [WeylDim(['F',4],x) for x in [1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] 

[52, 1274, 273, 26] 

sage: [WeylDim(['E', 6], x) for x in [0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 2], [0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [2, 0, 0, 0, 0, 0]] 

[1, 78, 27, 351, 351, 351, 27, 650, 351] 

""" 

ct = CartanType(ct) 

lattice = RootSystem(ct).ambient_space() 

rank = ct.rank() 

fw = lattice.fundamental_weights() 

hwv = lattice.sum(coeffs[i]*fw[i+1] for i in range(min(rank, len(coeffs)))) 

return lattice.weyl_dimension(hwv)