Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

""" 

Root system data for type A 

""" 

#***************************************************************************** 

# Copyright (C) 2008-2009 Daniel Bump 

# Copyright (C) 2008-2009 Justin Walker 

# Copyright (C) 2008-2009 Nicolas M. Thiery <nthiery at users.sf.net>, 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

from __future__ import absolute_import 

 

from sage.rings.all import ZZ 

from sage.combinat.root_system.root_lattice_realizations import RootLatticeRealizations 

from . import ambient_space 

 

class AmbientSpace(ambient_space.AmbientSpace): 

r""" 

EXAMPLES:: 

 

sage: R = RootSystem(["A",3]) 

sage: e = R.ambient_space(); e 

Ambient space of the Root system of type ['A', 3] 

sage: TestSuite(e).run() 

 

By default, this ambient space uses the barycentric projection for plotting:: 

 

sage: L = RootSystem(["A",2]).ambient_space() 

sage: e = L.basis() 

sage: L._plot_projection(e[0]) 

(1/2, 989/1142) 

sage: L._plot_projection(e[1]) 

(-1, 0) 

sage: L._plot_projection(e[2]) 

(1/2, -989/1142) 

sage: L = RootSystem(["A",3]).ambient_space() 

sage: l = L.an_element(); l 

(2, 2, 3, 0) 

sage: L._plot_projection(l) 

(0, -1121/1189, 7/3) 

 

.. SEEALSO:: 

 

- :meth:`sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations.ParentMethods._plot_projection` 

""" 

@classmethod 

def smallest_base_ring(cls, cartan_type=None): 

""" 

Returns the smallest base ring the ambient space can be defined upon 

 

.. SEEALSO:: :meth:`~sage.combinat.root_system.ambient_space.AmbientSpace.smallest_base_ring` 

 

EXAMPLES:: 

 

sage: e = RootSystem(["A",3]).ambient_space() 

sage: e.smallest_base_ring() 

Integer Ring 

""" 

return ZZ 

 

def dimension(self): 

""" 

EXAMPLES:: 

 

sage: e = RootSystem(["A",3]).ambient_space() 

sage: e.dimension() 

4 

""" 

return self.root_system.cartan_type().rank()+1 

 

def root(self, i, j): 

""" 

Note that indexing starts at 0. 

 

EXAMPLES:: 

 

sage: e = RootSystem(['A',3]).ambient_lattice() 

sage: e.root(0,1) 

(1, -1, 0, 0) 

""" 

return self.monomial(i) - self.monomial(j) 

 

def simple_root(self, i): 

""" 

EXAMPLES:: 

 

sage: e = RootSystem(['A',3]).ambient_lattice() 

sage: e.simple_roots() 

Finite family {1: (1, -1, 0, 0), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1)} 

""" 

return self.root(i-1, i) 

 

def negative_roots(self): 

""" 

EXAMPLES:: 

 

sage: e = RootSystem(['A',3]).ambient_lattice() 

sage: e.negative_roots() 

[(-1, 1, 0, 0), 

(-1, 0, 1, 0), 

(-1, 0, 0, 1), 

(0, -1, 1, 0), 

(0, -1, 0, 1), 

(0, 0, -1, 1)] 

""" 

res = [] 

for j in range(self.n-1): 

for i in range(j+1,self.n): 

res.append( self.root(i,j) ) 

return res 

 

def positive_roots(self): 

""" 

EXAMPLES:: 

 

sage: e = RootSystem(['A',3]).ambient_lattice() 

sage: e.positive_roots() 

[(1, -1, 0, 0), 

(1, 0, -1, 0), 

(0, 1, -1, 0), 

(1, 0, 0, -1), 

(0, 1, 0, -1), 

(0, 0, 1, -1)] 

 

""" 

res = [] 

for j in range(self.n): 

for i in range(j): 

res.append( self.root(i,j) ) 

return res 

 

def highest_root(self): 

""" 

EXAMPLES:: 

 

sage: e = RootSystem(['A',3]).ambient_lattice() 

sage: e.highest_root() 

(1, 0, 0, -1) 

""" 

return self.root(0,self.n-1) 

 

def fundamental_weight(self, i): 

""" 

EXAMPLES:: 

 

sage: e = RootSystem(['A',3]).ambient_lattice() 

sage: e.fundamental_weights() 

Finite family {1: (1, 0, 0, 0), 2: (1, 1, 0, 0), 3: (1, 1, 1, 0)} 

 

""" 

return self.sum(self.monomial(j) for j in range(i)) 

 

def det(self, k=1): 

""" 

returns the vector (1, ... ,1) which in the ['A',r] 

weight lattice, interpreted as a weight of GL(r+1,CC) 

is the determinant. If the optional parameter k is 

given, returns (k, ... ,k), the k-th power of the 

determinant. 

 

EXAMPLES:: 

 

sage: e = RootSystem(['A',3]).ambient_space() 

sage: e.det(1/2) 

(1/2, 1/2, 1/2, 1/2) 

""" 

return self.sum(self.monomial(j)*k for j in range(self.n)) 

 

_plot_projection = RootLatticeRealizations.ParentMethods.__dict__['_plot_projection_barycentric'] 

 

 

from .cartan_type import CartanType_standard_finite, CartanType_simply_laced, CartanType_simple 

class CartanType(CartanType_standard_finite, CartanType_simply_laced, CartanType_simple): 

""" 

Cartan Type `A_n` 

 

.. SEEALSO:: :func:`~sage.combinat.root_systems.cartan_type.CartanType` 

""" 

def __init__(self, n): 

""" 

EXAMPLES:: 

 

sage: ct = CartanType(['A',4]) 

sage: ct 

['A', 4] 

sage: ct._repr_(compact = True) 

'A4' 

 

sage: ct.is_irreducible() 

True 

sage: ct.is_finite() 

True 

sage: ct.is_affine() 

False 

sage: ct.is_crystallographic() 

True 

sage: ct.is_simply_laced() 

True 

sage: ct.affine() 

['A', 4, 1] 

sage: ct.dual() 

['A', 4] 

 

TESTS:: 

 

sage: TestSuite(ct).run() 

""" 

assert n >= 0 

CartanType_standard_finite.__init__(self, "A", n) 

 

def _latex_(self): 

r""" 

Return a latex representation of ``self``. 

 

EXAMPLES:: 

 

sage: latex(CartanType(['A',4])) 

A_{4} 

""" 

return "A_{%s}"%self.n 

 

AmbientSpace = AmbientSpace 

 

def coxeter_number(self): 

""" 

Return the Coxeter number associated with ``self``. 

 

EXAMPLES:: 

 

sage: CartanType(['A',4]).coxeter_number() 

5 

""" 

return self.n + 1 

 

def dual_coxeter_number(self): 

""" 

Return the dual Coxeter number associated with ``self``. 

 

EXAMPLES:: 

 

sage: CartanType(['A',4]).dual_coxeter_number() 

5 

""" 

return self.n + 1 

 

def dynkin_diagram(self): 

""" 

Returns the Dynkin diagram of type A. 

 

EXAMPLES:: 

 

sage: a = CartanType(['A',3]).dynkin_diagram() 

sage: a 

O---O---O 

1 2 3 

A3 

sage: sorted(a.edges()) 

[(1, 2, 1), (2, 1, 1), (2, 3, 1), (3, 2, 1)] 

 

TESTS:: 

 

sage: a = DynkinDiagram(['A',1]) 

sage: a 

O 

1 

A1 

sage: a.vertices(), a.edges() 

([1], []) 

""" 

from .dynkin_diagram import DynkinDiagram_class 

n = self.n 

g = DynkinDiagram_class(self) 

for i in range(1, n): 

g.add_edge(i, i+1) 

return g 

 

def _latex_dynkin_diagram(self, label=lambda i: i, node=None, node_dist=2): 

r""" 

Return a latex representation of the Dynkin diagram. 

 

EXAMPLES:: 

 

sage: print(CartanType(['A',4])._latex_dynkin_diagram()) 

\draw (0 cm,0) -- (6 cm,0); 

\draw[fill=white] (0 cm, 0 cm) circle (.25cm) node[below=4pt]{$1$}; 

\draw[fill=white] (2 cm, 0 cm) circle (.25cm) node[below=4pt]{$2$}; 

\draw[fill=white] (4 cm, 0 cm) circle (.25cm) node[below=4pt]{$3$}; 

\draw[fill=white] (6 cm, 0 cm) circle (.25cm) node[below=4pt]{$4$}; 

<BLANKLINE> 

 

sage: print(CartanType(['A',0])._latex_dynkin_diagram()) 

<BLANKLINE> 

sage: print(CartanType(['A',1])._latex_dynkin_diagram()) 

\draw[fill=white] (0 cm, 0 cm) circle (.25cm) node[below=4pt]{$1$}; 

<BLANKLINE> 

""" 

if node is None: 

node = self._latex_draw_node 

if self.n > 1: 

ret = "\\draw (0 cm,0) -- ({} cm,0);\n".format((self.n-1)*node_dist) 

else: 

ret = "" 

return ret + "".join(node((i-1)*node_dist, 0, label(i)) 

for i in self.index_set()) 

 

def ascii_art(self, label=lambda i: i, node=None): 

""" 

Return an ascii art representation of the Dynkin diagram. 

 

EXAMPLES:: 

 

sage: print(CartanType(['A',0]).ascii_art()) 

sage: print(CartanType(['A',1]).ascii_art()) 

O 

1 

sage: print(CartanType(['A',3]).ascii_art()) 

O---O---O 

1 2 3 

sage: print(CartanType(['A',12]).ascii_art()) 

O---O---O---O---O---O---O---O---O---O---O---O 

1 2 3 4 5 6 7 8 9 10 11 12 

sage: print(CartanType(['A',5]).ascii_art(label = lambda x: x+2)) 

O---O---O---O---O 

3 4 5 6 7 

sage: print(CartanType(['A',5]).ascii_art(label = lambda x: x-2)) 

O---O---O---O---O 

-1 0 1 2 3 

""" 

n = self.n 

if n == 0: 

return "" 

if node is None: 

node = self._ascii_art_node 

ret = "---".join(node(label(i)) for i in range(1,n+1)) + "\n" 

ret += "".join("{!s:4}".format(label(i)) for i in range(1,n+1)) 

return ret 

 

# For unpickling backward compatibility (Sage <= 4.1) 

from sage.structure.sage_object import register_unpickle_override 

register_unpickle_override('sage.combinat.root_system.type_A', 'ambient_space', AmbientSpace)