Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

""" 

Root system data for type F 

""" 

#***************************************************************************** 

# Copyright (C) 2008-2009 Daniel Bump 

# Copyright (C) 2008-2009 Justin Walker 

# Copyright (C) 2008-2009 Nicolas M. Thiery <nthiery at users.sf.net>, 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

from __future__ import absolute_import 

 

from six.moves import range 

 

from . import ambient_space 

from sage.rings.all import ZZ 

from sage.combinat.family import Family 

 

# TODO: double check that this can't be defined over ZZ 

 

class AmbientSpace(ambient_space.AmbientSpace): 

""" 

The lattice behind `F_4`. The computations are based on Bourbaki, 

Groupes et Algebres de Lie, Ch. 4,5,6 (planche VIII). 

""" 

def __init__(self, root_system, base_ring): 

r""" 

Initialize the ambient lattice for the root system of type `F_4`. 

 

This essentially initializes ``Base`` with the coordinates of 

the simple roots in the canonical basis for `\RR^4`. 

 

EXAMPLES:: 

 

sage: e = RootSystem(['F',4]).ambient_space() 

 

TESTS:: 

 

sage: TestSuite(e).run() 

""" 

ambient_space.AmbientSpace.__init__(self, root_system, base_ring) 

v = ZZ(1)/ZZ(2) 

self.Base = [self.root(1,2,p2=1), 

self.root(2,3,p2=1), 

self.root(3), 

v*(self.root(0)-self.root(1)-self.root(2)-self.root(3))] 

 

 

def dimension(self): 

""" 

Return the dimension of ``self``. 

 

EXAMPLES:: 

 

sage: e = RootSystem(['F',4]).ambient_space() 

sage: e.dimension() 

4 

""" 

return self.root_system.cartan_type().rank() 

 

 

def root(self, i, j=None, k=None, l=None, p1=0, p2=0, p3=0, p4=0): 

""" 

Compute a root from base elements of the underlying lattice. 

The arguments specify the basis elements and the signs. 

Sadly, the base elements are indexed zero-based. 

We assume that if one of the indices is not given, the rest are not as well. 

 

EXAMPLES:: 

 

sage: e = RootSystem(['F',4]).ambient_space() 

sage: [ e.root(i,j,p2=1) for i in range(e.n) for j in range(i+1,e.n) ] 

[(1, -1, 0, 0), (1, 0, -1, 0), (1, 0, 0, -1), (0, 1, -1, 0), (0, 1, 0, -1), (0, 0, 1, -1)] 

""" 

if i == j or j is None: 

return (-1)**p1*self.monomial(i) 

if k is None: 

return (-1)**p1*self.monomial(i) + (-1)**p2*self.monomial(j) 

if l is None: 

return (-1)**p1*self.monomial(i) + (-1)**p2*self.monomial(j)+(-1)**p3*self.monomial(k) 

return (-1)**p1*self.monomial(i) + (-1)**p2*self.monomial(j)+(-1)**p3*self.monomial(k)+(-1)**p4*self.monomial(l) 

 

def simple_root(self, i): 

r""" 

Return the `i`-th simple root. 

 

It is computed according to what Bourbaki calls the Base: 

 

.. MATH:: 

 

\alpha_1 = \epsilon_2-\epsilon_3, 

\alpha_2 = \epsilon_3-\epsilon_4, 

\alpha_3 = \epsilon_4, 

\alpha_4 = \frac{1}{2} \left( \epsilon_1-\epsilon_2-\epsilon_3-\epsilon_4 \right). 

 

EXAMPLES:: 

 

sage: e = RootSystem(['F',4]).ambient_space() 

sage: e.simple_roots() 

Finite family {1: (0, 1, -1, 0), 2: (0, 0, 1, -1), 3: (0, 0, 0, 1), 4: (1/2, -1/2, -1/2, -1/2)} 

""" 

return self.Base[i-1] 

 

def negative_roots(self): 

""" 

Return the negative roots. 

 

EXAMPLES:: 

 

sage: e = RootSystem(['F',4]).ambient_space() 

sage: e.negative_roots() 

[(-1, 0, 0, 0), 

(0, -1, 0, 0), 

(0, 0, -1, 0), 

(0, 0, 0, -1), 

(-1, -1, 0, 0), 

(-1, 0, -1, 0), 

(-1, 0, 0, -1), 

(0, -1, -1, 0), 

(0, -1, 0, -1), 

(0, 0, -1, -1), 

(-1, 1, 0, 0), 

(-1, 0, 1, 0), 

(-1, 0, 0, 1), 

(0, -1, 1, 0), 

(0, -1, 0, 1), 

(0, 0, -1, 1), 

(-1/2, -1/2, -1/2, -1/2), 

(-1/2, -1/2, -1/2, 1/2), 

(-1/2, -1/2, 1/2, -1/2), 

(-1/2, -1/2, 1/2, 1/2), 

(-1/2, 1/2, -1/2, -1/2), 

(-1/2, 1/2, -1/2, 1/2), 

(-1/2, 1/2, 1/2, -1/2), 

(-1/2, 1/2, 1/2, 1/2)] 

""" 

return [ -a for a in self.positive_roots()] 

 

def positive_roots(self): 

r""" 

Return the positive roots. 

 

These are the roots which are positive with respect to the 

lexicographic ordering of the basis elements 

(`\epsilon_1<\epsilon_2<\epsilon_3<\epsilon_4`). 

 

EXAMPLES:: 

 

sage: e = RootSystem(['F',4]).ambient_space() 

sage: e.positive_roots() 

[(1, 0, 0, 0), 

(0, 1, 0, 0), 

(0, 0, 1, 0), 

(0, 0, 0, 1), 

(1, 1, 0, 0), 

(1, 0, 1, 0), 

(1, 0, 0, 1), 

(0, 1, 1, 0), 

(0, 1, 0, 1), 

(0, 0, 1, 1), 

(1, -1, 0, 0), 

(1, 0, -1, 0), 

(1, 0, 0, -1), 

(0, 1, -1, 0), 

(0, 1, 0, -1), 

(0, 0, 1, -1), 

(1/2, 1/2, 1/2, 1/2), 

(1/2, 1/2, 1/2, -1/2), 

(1/2, 1/2, -1/2, 1/2), 

(1/2, 1/2, -1/2, -1/2), 

(1/2, -1/2, 1/2, 1/2), 

(1/2, -1/2, 1/2, -1/2), 

(1/2, -1/2, -1/2, 1/2), 

(1/2, -1/2, -1/2, -1/2)] 

sage: e.rho() 

(11/2, 5/2, 3/2, 1/2) 

""" 

v = ZZ(1)/ZZ(2) 

if not hasattr(self, 'PosRoots'): 

self.PosRoots = ([ self.monomial(i) for i in range(self.n) ] + 

[ self.root(i,j,p2=0) for i in range(self.n) for j in range(i+1,self.n) ] + 

[ self.root(i,j,p2=1) for i in range(self.n) for j in range(i+1,self.n) ] + 

[ v*self.root(0,1,2,3,0,p2,p3,p4) for p2 in [0,1] for p3 in [0,1] for p4 in [0,1] ]) 

return self.PosRoots 

 

def fundamental_weights(self): 

""" 

Return the fundamental weights of ``self``. 

 

EXAMPLES:: 

 

sage: e = RootSystem(['F',4]).ambient_space() 

sage: e.fundamental_weights() 

Finite family {1: (1, 1, 0, 0), 2: (2, 1, 1, 0), 3: (3/2, 1/2, 1/2, 1/2), 4: (1, 0, 0, 0)} 

""" 

v = ZZ(1)/ZZ(2) 

return Family({ 1: self.monomial(0)+self.monomial(1), 

2: 2*self.monomial(0)+self.monomial(1)+self.monomial(2), 

3: v*(3*self.monomial(0)+self.monomial(1)+self.monomial(2)+self.monomial(3)), 

4: self.monomial(0)}) 

 

from .cartan_type import CartanType_standard_finite, CartanType_simple, CartanType_crystallographic 

class CartanType(CartanType_standard_finite, CartanType_simple, CartanType_crystallographic): 

def __init__(self): 

""" 

EXAMPLES:: 

 

sage: ct = CartanType(['F',4]) 

sage: ct 

['F', 4] 

sage: ct._repr_(compact = True) 

'F4' 

 

sage: ct.is_irreducible() 

True 

sage: ct.is_finite() 

True 

sage: ct.is_crystallographic() 

True 

sage: ct.is_simply_laced() 

False 

sage: ct.dual() 

['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1} 

sage: ct.affine() 

['F', 4, 1] 

 

TESTS:: 

 

sage: TestSuite(ct).run() 

""" 

CartanType_standard_finite.__init__(self, "F", 4) 

 

def _latex_(self): 

r""" 

Return a latex representation of ``self``. 

 

EXAMPLES:: 

 

sage: latex(CartanType(['F',4])) 

F_4 

sage: latex(CartanType(['F',4]).dual()) 

F_4 \text{ relabelled by } \left\{1 : 4, 2 : 3, 3 : 2, 4 : 1\right\} 

""" 

return "F_4" 

 

AmbientSpace = AmbientSpace 

 

def coxeter_number(self): 

""" 

Return the Coxeter number associated with ``self``. 

 

EXAMPLES:: 

 

sage: CartanType(['F',4]).coxeter_number() 

12 

""" 

return 12 

 

def dual_coxeter_number(self): 

""" 

Return the dual Coxeter number associated with ``self``. 

 

EXAMPLES:: 

 

sage: CartanType(['F',4]).dual_coxeter_number() 

9 

""" 

return 9 

 

def dynkin_diagram(self): 

""" 

Returns a Dynkin diagram for type F. 

 

EXAMPLES:: 

 

sage: f = CartanType(['F',4]).dynkin_diagram() 

sage: f 

O---O=>=O---O 

1 2 3 4 

F4 

sage: sorted(f.edges()) 

[(1, 2, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1), (3, 4, 1), (4, 3, 1)] 

 

""" 

from .dynkin_diagram import DynkinDiagram_class 

g = DynkinDiagram_class(self) 

for i in range(1, 4): 

g.add_edge(i, i+1) 

g.set_edge_label(2,3,2) 

return g 

 

def _latex_dynkin_diagram(self, label=lambda i: i, node=None, node_dist=2, dual=False): 

r""" 

Return a latex representation of the Dynkin diagram. 

 

EXAMPLES:: 

 

sage: print(CartanType(['F',4])._latex_dynkin_diagram()) 

\draw (0 cm,0) -- (2 cm,0); 

\draw (2 cm, 0.1 cm) -- +(2 cm,0); 

\draw (2 cm, -0.1 cm) -- +(2 cm,0); 

\draw (4.0 cm,0) -- +(2 cm,0); 

\draw[shift={(3.2, 0)}, rotate=0] (135 : 0.45cm) -- (0,0) -- (-135 : 0.45cm); 

\draw[fill=white] (0 cm, 0 cm) circle (.25cm) node[below=4pt]{$1$}; 

\draw[fill=white] (2 cm, 0 cm) circle (.25cm) node[below=4pt]{$2$}; 

\draw[fill=white] (4 cm, 0 cm) circle (.25cm) node[below=4pt]{$3$}; 

\draw[fill=white] (6 cm, 0 cm) circle (.25cm) node[below=4pt]{$4$}; 

<BLANKLINE> 

""" 

if node is None: 

node = self._latex_draw_node 

ret = "\\draw (0 cm,0) -- (%s cm,0);\n"%node_dist 

ret += "\\draw (%s cm, 0.1 cm) -- +(%s cm,0);\n"%(node_dist, node_dist) 

ret += "\\draw (%s cm, -0.1 cm) -- +(%s cm,0);\n"%(node_dist, node_dist) 

ret += "\\draw (%s cm,0) -- +(%s cm,0);\n"%(node_dist*2.0, node_dist) 

if dual: 

ret += self._latex_draw_arrow_tip(1.5*node_dist-0.2, 0, 180) 

else: 

ret += self._latex_draw_arrow_tip(1.5*node_dist+0.2, 0, 0) 

for i in range(4): 

ret += node(i*node_dist, 0, label(i+1)) 

return ret 

 

def ascii_art(self, label=lambda i: i, node=None): 

""" 

Return an ascii art representation of the extended Dynkin diagram. 

 

EXAMPLES:: 

 

sage: print(CartanType(['F',4]).ascii_art(label = lambda x: x+2)) 

O---O=>=O---O 

3 4 5 6 

sage: print(CartanType(['F',4]).ascii_art(label = lambda x: x-2)) 

O---O=>=O---O 

-1 0 1 2 

""" 

if node is None: 

node = self._ascii_art_node 

ret = "{}---{}=>={}---{}\n".format(node(label(1)), node(label(2)), 

node(label(3)), node(label(4))) 

ret += ("{!s:4}"*4).format(label(1), label(2), label(3), label(4)) 

return ret 

 

def dual(self): 

r""" 

Return the dual Cartan type. 

 

This uses that `F_4` is self-dual up to relabelling. 

 

EXAMPLES:: 

 

sage: F4 = CartanType(['F',4]) 

sage: F4.dual() 

['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1} 

 

sage: F4.dynkin_diagram() 

O---O=>=O---O 

1 2 3 4 

F4 

sage: F4.dual().dynkin_diagram() 

O---O=>=O---O 

4 3 2 1 

F4 relabelled by {1: 4, 2: 3, 3: 2, 4: 1} 

""" 

return self.relabel({1:4, 2:3, 3:2, 4:1}) 

 

def _default_folded_cartan_type(self): 

""" 

Return the default folded Cartan type. 

 

EXAMPLES:: 

 

sage: CartanType(['F', 4])._default_folded_cartan_type() 

['F', 4] as a folding of ['E', 6] 

""" 

from sage.combinat.root_system.type_folded import CartanTypeFolded 

return CartanTypeFolded(self, ['E', 6], [[2], [4], [3, 5], [1, 6]]) 

 

# For unpickling backward compatibility (Sage <= 4.1) 

from sage.structure.sage_object import register_unpickle_override 

register_unpickle_override('sage.combinat.root_system.type_F', 'ambient_space', AmbientSpace)