Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

r""" 

Root system data for folded Cartan types 

 

AUTHORS: 

 

- Travis Scrimshaw (2013-01-12) - Initial version 

""" 

#***************************************************************************** 

# Copyright (C) 2013 Travis Scrimshaw <tscrim@ucdavis.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.misc.cachefunc import cached_method 

from sage.structure.sage_object import SageObject 

from sage.structure.unique_representation import UniqueRepresentation 

from sage.sets.family import Family 

from sage.combinat.root_system.cartan_type import CartanType 

 

import six 

 

 

class CartanTypeFolded(UniqueRepresentation, SageObject): 

r""" 

A Cartan type realized from a (Dynkin) diagram folding. 

 

Given a Cartan type `X`, we say `\hat{X}` is a folded Cartan 

type of `X` if there exists a diagram folding of the Dynkin 

diagram of `\hat{X}` onto `X`. 

 

A folding of a simply-laced Dynkin diagram `D` with index set `I` is an 

automorphism `\sigma` of `D` where all nodes any orbit of `\sigma` are not 

connected. The resulting Dynkin diagram `\hat{D}` is induced by 

`I / \sigma` where we identify edges in `\hat{D}` which are not incident 

and add a `k`-edge if we identify `k` incident edges and the arrow is 

pointing towards the indicent note. We denote the index set of `\hat{D}` 

by `\hat{I}`, and by abuse of notation, we denote the folding by `\sigma`. 

 

We also have scaling factors `\gamma_i` for `i \in \hat{I}` and defined 

as the unique numbers such that the map 

`\Lambda_j \mapsto \gamma_j \sum_{i \in \sigma^{-1}(j)} \Lambda_i` 

is the smallest proper embedding of the weight lattice of `X` to `\hat{X}`. 

 

If the Cartan type is simply laced, the default folding is the one 

induced from the identity map on `D`. 

 

If `X` is affine type, the default embeddings we consider here are: 

 

.. MATH:: 

 

\begin{array}{ccl} 

C_n^{(1)}, A_{2n}^{(2)}, A_{2n}^{(2)\dagger}, D_{n+1}^{(2)} 

& \hookrightarrow & A_{2n-1}^{(1)}, \\ 

A_{2n-1}^{(2)}, B_n^{(1)} & \hookrightarrow & D_{n+1}^{(1)}, \\ 

E_6^{(2)}, F_4^{(1)} & \hookrightarrow & E_6^{(1)}, \\ 

D_4^{(3)}, G_2^{(1)} & \hookrightarrow & D_4^{(1)}, 

\end{array} 

 

and were chosen based on virtual crystals. In particular, the diagram 

foldings extend to crystal morphisms and gives a realization of 

Kirillov-Reshetikhin crystals for non-simply-laced types as simply-laced 

types. See [OSShimo03]_ and [FOS09]_ for more details. Here we can compute 

`\gamma_i = \max(c) / c_i` where `(c_i)_i` are the translation factors 

of the root system. In a more type-dependent way, we can define `\gamma_i` 

as follows: 

 

1. There exists a unique arrow (multiple bond) in `X`. 

 

a. Suppose the arrow points towards 0. Then `\gamma_i = 1` for all 

`i \in I`. 

b. Otherwise `\gamma_i` is the order of `\sigma` for all `i` in the 

connected component of 0 after removing the arrow, else 

`\gamma_i = 1`. 

 

2. There is not a unique arrow. Thus `\hat{X} = A_{2n-1}^{(1)}` and 

`\gamma_i = 1` for all `1 \leq i \leq n-1`. If `i \in \{0, n\}`, then 

`\gamma_i = 2` if the arrow incident to `i` points away and is `1` 

otherwise. 

 

We note that `\gamma_i` only depends upon `X`. 

 

If the Cartan type is finite, then we consider the classical 

foldings/embeddings induced by the above affine foldings/embeddings: 

 

.. MATH:: 

 

\begin{aligned} 

C_n & \hookrightarrow A_{2n-1}, \\ 

B_n & \hookrightarrow D_{n+1}, \\ 

F_4 & \hookrightarrow E_6, \\ 

G_2 & \hookrightarrow D_4. 

\end{aligned} 

 

For more information on Cartan types, see 

:mod:`sage.combinat.root_system.cartan_type`. 

 

Other foldings may be constructed by passing in an optional 

``folding_of`` second argument. See below. 

 

INPUT: 

 

- ``cartan_type`` -- the Cartan type `X` to create the folded type 

 

- ``folding_of`` -- the Cartan type `\hat{X}` which `X` is a folding of 

 

- ``orbit`` -- the orbit of the Dynkin diagram automorphism `\sigma` 

given as a list of lists where the `a`-th list corresponds to the `a`-th 

entry in `I` or a dictionary with keys in `I` and values as lists 

 

.. NOTE:: 

 

If `X` is an affine type, we assume the special node is fixed 

under `\sigma`. 

 

EXAMPLES:: 

 

sage: fct = CartanType(['C',4,1]).as_folding(); fct 

['C', 4, 1] as a folding of ['A', 7, 1] 

sage: fct.scaling_factors() 

Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 2} 

sage: fct.folding_orbit() 

Finite family {0: (0,), 1: (1, 7), 2: (2, 6), 3: (3, 5), 4: (4,)} 

 

A simply laced Cartan type can be considered as a virtual type of 

itself:: 

 

sage: fct = CartanType(['A',4,1]).as_folding(); fct 

['A', 4, 1] as a folding of ['A', 4, 1] 

sage: fct.scaling_factors() 

Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1} 

sage: fct.folding_orbit() 

Finite family {0: (0,), 1: (1,), 2: (2,), 3: (3,), 4: (4,)} 

 

Finite types:: 

 

sage: fct = CartanType(['C',4]).as_folding(); fct 

['C', 4] as a folding of ['A', 7] 

sage: fct.scaling_factors() 

Finite family {1: 1, 2: 1, 3: 1, 4: 2} 

sage: fct.folding_orbit() 

Finite family {1: (1, 7), 2: (2, 6), 3: (3, 5), 4: (4,)} 

 

sage: fct = CartanType(['F',4]).dual().as_folding(); fct 

['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1} as a folding of ['E', 6] 

sage: fct.scaling_factors() 

Finite family {1: 1, 2: 1, 3: 2, 4: 2} 

sage: fct.folding_orbit() 

Finite family {1: (1, 6), 2: (3, 5), 3: (4,), 4: (2,)} 

 

REFERENCES: 

 

- :wikipedia:`Dynkin_diagram#Folding` 

 

.. [OSShimo03] \M. Okado, A. Schilling, M. Shimozono. 

"Virtual crystals and fermionic formulas for type `D_{n+1}^{(2)}`, 

`A_{2n}^{(2)}`, and `C_n^{(1)}`". Representation Theory. **7** (2003). 

101-163. :doi:`10.1.1.192.2095`, :arxiv:`0810.5067`. 

""" 

@staticmethod 

def __classcall_private__(cls, cartan_type, virtual, orbit): 

""" 

Normalize input to ensure a unique representation. 

 

EXAMPLES:: 

 

sage: from sage.combinat.root_system.type_folded import CartanTypeFolded 

sage: sigma_list = [[0], [1,5], [2,4], [3]] 

sage: fct1 = CartanTypeFolded(['C',3,1], ['A',5,1], sigma_list) 

sage: sigma_tuple = tuple(map(tuple, sigma_list)) 

sage: fct2 = CartanTypeFolded(CartanType(['C',3,1]), CartanType(['A',5,1]), sigma_tuple) 

sage: fct3 = CartanTypeFolded('C3~', 'A5~', {0:[0], 2:[2,4], 1:[1,5], 3:[3]}) 

sage: fct1 is fct2 and fct2 is fct3 

True 

""" 

if isinstance(cartan_type, CartanTypeFolded): 

return cartan_type 

cartan_type = CartanType(cartan_type) 

virtual = CartanType(virtual) 

if isinstance(orbit, dict): 

i_set = cartan_type.index_set() 

orb = [None]*len(i_set) 

for k,v in six.iteritems(orbit): 

orb[i_set.index(k)] = tuple(v) 

orbit = tuple(orb) 

else: 

orbit = tuple(map(tuple, orbit)) 

return super(CartanTypeFolded, cls).__classcall__(cls, cartan_type, virtual, orbit) 

 

def __init__(self, cartan_type, folding_of, orbit): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: fct = CartanType(['C',4,1]).as_folding() 

sage: TestSuite(fct).run() 

sage: hash(fct) # random 

42 

""" 

self._cartan_type = cartan_type 

self._folding = folding_of 

self._orbit = orbit 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: CartanType(['C',4,1]).as_folding() 

['C', 4, 1] as a folding of ['A', 7, 1] 

""" 

return "{} as a folding of {}".format(self._cartan_type, self._folding) 

 

def _latex_(self): 

r""" 

Return a latex representation of ``self``. 

 

EXAMPLES:: 

 

sage: fct = CartanType(['C', 4, 1]).as_folding() 

sage: latex(fct) 

C_{4}^{(1)} \hookrightarrow A_{7}^{(1)} 

""" 

return self._cartan_type._latex_() + " \\hookrightarrow " + self._folding._latex_() 

 

def cartan_type(self): 

""" 

Return the Cartan type of ``self``. 

 

EXAMPLES:: 

 

sage: fct = CartanType(['C', 4, 1]).as_folding() 

sage: fct.cartan_type() 

['C', 4, 1] 

""" 

return self._cartan_type 

 

def folding_of(self): 

""" 

Return the Cartan type of the virtual space. 

 

EXAMPLES:: 

 

sage: fct = CartanType(['C', 4, 1]).as_folding() 

sage: fct.folding_of() 

['A', 7, 1] 

""" 

return self._folding 

 

@cached_method 

def folding_orbit(self): 

""" 

Return the orbits under the automorphism `\sigma` as a 

dictionary (of tuples). 

 

EXAMPLES:: 

 

sage: fct = CartanType(['C', 4, 1]).as_folding() 

sage: fct.folding_orbit() 

Finite family {0: (0,), 1: (1, 7), 2: (2, 6), 3: (3, 5), 4: (4,)} 

""" 

return Family({i:tuple(self._orbit[pos]) 

for pos,i in enumerate(self._cartan_type.index_set())}) 

 

@cached_method 

def scaling_factors(self): 

""" 

Return the scaling factors of ``self``. 

 

EXAMPLES:: 

 

sage: fct = CartanType(['C', 4, 1]).as_folding() 

sage: fct.scaling_factors() 

Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 2} 

sage: fct = CartanType(['BC', 4, 2]).as_folding() 

sage: fct.scaling_factors() 

Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 2} 

sage: fct = CartanType(['BC', 4, 2]).dual().as_folding() 

sage: fct.scaling_factors() 

Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 1} 

sage: CartanType(['BC', 4, 2]).relabel({0:4, 1:3, 2:2, 3:1, 4:0}).as_folding().scaling_factors() 

Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 1} 

""" 

if self._cartan_type.is_finite(): 

L = self._cartan_type.root_system().ambient_space() 

def f(i): 

root = L.simple_root(i) 

coroot = L.simple_coroot(i) 

return root.leading_coefficient() / coroot.leading_coefficient() 

index_set = self._cartan_type.index_set() 

min_f = min(f(j) for j in index_set) 

return Family(dict( (i, int(f(i) / min_f)) for i in index_set )) 

elif self._cartan_type.is_affine(): 

c = self._cartan_type.translation_factors() 

cmax = max(c) 

return Family(dict( (i, int(cmax / c[i])) 

for i in self._cartan_type.index_set() ))